
SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. 634–661

LINK REVERSAL ROUTING WITH BINARY LINK LABELS:
WORK COMPLEXITY∗

BERNADETTE CHARRON-BOST† , ANTOINE GAILLARD‡ , JENNIFER L. WELCH§ , AND

JOSEF WIDDER¶

Abstract. Full Reversal and Partial Reversal are two well-known routing algorithms that were
introduced by Gafni and Bertsekas [IEEE Trans. Commun., 29 (1981), pp. 11–18]. By reversing the
directions of some links of the graph, these algorithms transform a connected input DAG (directed
acyclic graph) into an output DAG in which each node has at least one path to a distinguished
destination node. We present a generalization of these algorithms, called the link reversal (LR)
algorithm, based on a novel formalization that assigns binary labels to the links of the input DAG.
We characterize the legal link labelings for which LR is guaranteed to establish routes. Moreover,
we give an exact expression for the number of steps—called work complexity —taken by each node
in every execution of LR from any legal input graph. Exact expressions for the per-node work
complexity of Full Reversal and Partial Reversal follow from our general formula; this is the first
exact expression known for Partial Reversal. Our binary link labels formalism facilitates comparison
of the work complexity of certain link labelings— including those corresponding to Full Reversal
and Partial Reversal—using game theory. We consider labelings in which all incoming links of a
given node i are labeled with the same binary value μi. Finding initial labelings that induce good
work complexity can be considered as a game in which to each node i a player is associated who has
strategy μi. In this game, one tries to minimize the cost, i.e., the number of steps. Modeling the
initial labelings as this game allows us to compare the work complexity of Full Reversal and Partial
Reversal in a way that provides a rigorous basis for the intuition that Partial Reversal is better than
Full Reversal with respect to work complexity.

Key words. link reversal routing, wireless networks, complexity of algorithms, applications of
game theory

AMS subject classifications. 68W15, 68W40, 91A80, 68Q25

DOI. 10.1137/110843095

1. Introduction. Mobile radio networks, with their ad hoc deployments, node
mobility, and wireless communication, pose serious challenges for developing prov-
ably correct and efficient applications. A popular algorithm design technique for such
systems is link reversal, first proposed by Gafni and Bertsekas [10] for routing. Sub-
sequent routing algorithms based on link reversal were developed (see, e.g., [21, 12]),
and extensions were made to solve other problems in mobile ad-hoc networks includ-
ing mutual exclusion [23, 17, 25] and leader election [15, 9, 11]. Link reversal has
also been employed in algorithms for resource allocation [5, 2, 14] and distributed

∗Received by the editors August 2, 2011; accepted for publication (in revised form) January 29,
2013; published electronically April 3, 2013. This work was presented in part at ACM SPAA 2009
[7] and Algosensors 2009 [8].

http://www.siam.org/journals/sicomp/42-2/84309.html
†CNRS, LIX, Ecole polytechnique, F-91128 Palaiseau, France (charron@lix.polytechnique.fr).
‡LIX, Ecole polytechnique, F-91128 Palaiseau, France (antoine.gaillard@gmail.com).
§Department of Computer Science and Engineering, Texas A&M University, College Station, TX

77843 (welch@cse.tamu.edu). The research of this author was supported in part by NSF grants
0500265 and 0964696, and by Texas Higher Education Coordinating Board grants ARP 000512-
0130-2007 and ARP 000512-0007-2006.

¶TU Wien, Formal Methods in Systems Engineering Group, 1040 Wien, Austria (widder@
forsyte.at). The research of this author was supported in part by the French DGA/LIX project, by
the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF),
by FWF projects P20529 and P18264, and by the Vienna Science and Technology Fund (WWTF)
grant PROSEED.

634

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 635

queuing [24, 1]. Gafni and Bertsekas [10] considered the following routing problem:
the network contains a unique destination node and a virtual direction is associated
with each communication link. The link directions should eventually ensure that ev-
ery node has a directed path to the destination, i.e., that the graph corresponding to
the nodes and the directed links is destination-oriented . Messages can then be routed
through the network from a node to the destination by following the virtual directions
of the links.

A common approach to the routing problem is to construct a spanning tree rooted
at the destination and to forward messages over the edges of the spanning tree toward
the root. An advantage of the link reversal approach over the spanning tree approach
is the built-in fault tolerance. In the spanning tree approach, any single failure of a
tree link disconnects the tree and prevents nodes downstream from the failed link from
communicating with the destination. In contrast, the link reversal approach exploits
the redundancy in the entire graph by assigning directions to all links. As long as a
path to the destination remains, any number of link failures can be tolerated.

If, due to the failure or movement of one node and the resulting loss of its incident
links, a node no longer has a directed path to the destination, then the network should
adjust itself to restore the property. The adjustments consist of nodes reversing some
of their incident links. Nodes should be able to determine autonomously, based only
on local information, whether they need to perform reversals.

Gafni and Bertsekas [10] restricted their study to the setting of acyclic directed
graphs and presented two abstract algorithms, each with a distributed implementa-
tion. In both abstract graph algorithms, any node other than the destination that
becomes a sink reverses some of its incident links. The algorithms differ by which in-
cident links they choose for reversal. In the Full Reversal algorithm, all incident links
are reversed, whereas in the Partial Reversal algorithm, only those that have not been
reversed since the last time this node was a sink are reversed, roughly speaking. The
dynamics of link directions in both algorithms is implemented by assigning a height ,
drawn from a totally ordered set, to each node, and considering a link to be directed
from the endpoint with larger height to that with smaller height. A link reversal is
implemented by increasing the height of a sink.

In more detail, each node has a unique identifier from a totally ordered set as,
for instance, the natural numbers. The height for the Full Reversal implementation
is an ordered pair consisting of the value of an (unbounded) counter and the unique
identifier of the node. The height for the Partial Reversal implementation is an
ordered triple consisting of the values of two unbounded counters and the unique
identifier of the node. For both implementations, the order under consideration is
the lexicographic order. We will refer to these two implementations as the pair and
triple algorithms. A sink applies a function, based on its current height and those
of its neighbors, to calculate its new height; for the Full Reversal implementation,
the function simply sets the counter to be larger than the counters of all neighbors,
whereas the function for the Partial Reversal algorithm increases in a smoother mode.

Gafni and Bertsekas proved that the two resulting distributed algorithms are
correct, that is, that they both terminate and, when they do, that the directions
on the links form a destination-oriented acyclic graph. For the proof, they consider
a generalization of the heights and the functions that manipulate them, and prove
correctness for the generalization.

The order-based approach by Gafni and Bertsekas has several advantages, which
may account for its popularity. First, it allows the unification of a large class of
distributed algorithms, including the pair and triple algorithms, in an elegant way.

636 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

As a result, the convergence of the two algorithms is proven in [10] by considering
only some abstract properties of the heights and the functions that change them.
Moreover, by varying the representation of heights as well as the functions, one may
expect to get more algorithms than just the pair and triple algorithms. Finally, the
ordered structure of heights gives the acyclicity of the solution for free.

However, when examining the approach closely, two questions arise. First, there
is no proof that the pair and triple algorithms actually coincide with Full Reversal
and Partial Reversal; while in the case of the pair algorithm the correspondence to
Full Reversal is obvious, a formal reasoning for Partial Reversal would be much more
involved [6]. In fact, there was no proof that Partial Reversal converges toward a
destination-oriented graph until the preliminary version of this paper appeared [7].
Second, even when we assume the exact correspondence between the pair and triple
algorithms and the Full Reversal and Partial Reversal algorithms, the height imple-
mentation does not seem to be well-adapted to the analysis of the abstract link reversal
algorithms, as the height implementation makes the analysis more obscure. Indeed,
other than the exact formula for the pair algorithm and the worst-case asymptotic
analyses for the pair and triple algorithms due to Busch, Surapaneni, and Tirtha-
pura [3, 4], little is known about the work complexity of these algorithms. In partic-
ular, there is no fine-grained comparison of Full Reversal and Partial Reversal that
would guide system designers in the choice of implementing one link reversal algorithm
over the other.

Binary link labelings and exact work complexity. From the informal specifications
of the abstract Full Reversal and Partial Reversal algorithms, we give a formal defini-
tion of a generalization of these algorithms. Our generalized algorithm takes as input
a directed acyclic graph (DAG) with binary labels on the links and, under certain
conditions on the labeling, establishes routes to the destination. More precisely, we
give a condition (AC) which ensures that the graph remains acyclic during the whole
execution. The Full Reversal (resp., Partial Reversal) algorithm is the specialization
of our general algorithm in which all initial link labels are � (resp., �). We check
that both these initial link labelings satisfy (AC) in any acyclic graph, which proves
that Full Reversal and Partial Reversal preserve acyclicity. Hence, our formaliza-
tion allows us to give a simple and unified proof that both algorithms result in a
destination-oriented DAG.

Surprisingly, there was no methodical study of the complexity of link reversal
algorithms until the work by Busch, Surapaneni, and Tirthapura [3, 4], which analyzed
the work complexity of a node —the number of reversals performed by the node—
for the pair and the triple algorithms.1 For the pair algorithm, the authors gave an
exact expression of the work complexity of each node, while for the triple algorithm
they only established an upper bound. Concerning the global work complexity , that
is, the total number of reversals performed by all the nodes, they thus obtained upper
bounds for the pair and triple algorithms, both of which are quadratic in the number
of nodes and are asymptotically tight.

Our formalization of the general link reversal algorithm allows us to express the
work of each node in any execution of the algorithm on any acyclic input graph. The
expression depends only on the initial link-labeled graph and is specialized to simple
formulas for Full Reversal and Partial Reversal. In contrast, the work complexity

1More precisely, Busch, Surapaneni, and Tirthapura considered the triple algorithm with initial
heights which are more general than in [10]. This extension of the triple algorithm is discussed in
section 7.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 637

result in [3, 4] is exact only for the pair algorithm (corresponding to Full Reversal).
Having an exact and general formula facilitates determining the best and worst graph
topologies and, as we discuss next, allows us to conduct a fine-grained comparison of
Full Reversal and Partial Reversal based on game theory.

Locally uniform labelings as a game. Interestingly, our algorithm captures more
than just the Full Reversal and Partial Reversal algorithms, by considering nonuniform
initializations of link labels. We investigate the locally uniform (LU) policy for initial
link labels: for each node i, all the incoming links of i are initially labeled with the
same value μi ∈ {�, �}. In this policy, Full Reversal corresponds to the uniform
labeling � (for each i, μi = �) and Partial Reversal to the uniform labeling � (for each
i, μi = �). Moreover, we will see that for any acyclic graph, LU ensures (AC).

We then use game theory to compare the work done in executions starting with
graphs labeled according to LU . As LU is a local policy (each node may be responsible
for the labeling of its incoming links), it is natural to associate to each node a player
with the two pure strategies � and � corresponding to the label choice. Then a strategy
profile —consisting of a strategy for each player—corresponds to an initial labeled
graph. The cost incurred by player i is then the work done by i in an execution
starting from the initial labeled graph. The social cost of a given strategy profile is
defined as the global work (the sum of the work over all nodes).

First, we study the influence of i’s choice on its own work as well as on the work
of the others. From this we observe that the strategy of some node i that reduces the
cost incurred by i may increase the cost incurred by other nodes, and also the social
cost. These conflicting interests motivate our detailed game-theoretic analysis. We
start this analysis by giving a characterization of pure Nash equilibria for this game.
As a result we obtain that there always exists a pure Nash equilibrium, namely the
profile corresponding to Full Reversal. We show that in terms of social cost (global
work complexity) however, this profile is the worst pure Nash equilibrium. Moreover,
the social cost of Full Reversal may be larger than the optimal social cost by some
factor which depends on the graph. We will see that for certain chains of length n,
this factor is n+1

2 , and so there is no constant bound on the price of anarchy [13]
which holds for all graphs.

In contrast, the profile corresponding to Partial Reversal is not necessarily a pure
Nash equilibrium. However, we show that its social cost is at most twice the optimal
social cost. Hence, even if not optimum, Partial Reversal is never a disastrous strategy
compared to others and seems “less risky” than Full Reversal in this respect.

Finally, we consider the mixed [18] version of the game, in which each player i’s
mixed strategy μ∗

i is the probability that μi is set to �, and the cost is the expected
work. In such a way, we can model random initialization of the link-labeled graph
according to LU as a mixed game. We provide a characterization of mixed Nash
equilibria and show that, in some sense that we make precise, there are no interesting
mixed Nash equilibria other than the pure ones, and thus randomization does not
help to find more efficient initial link labelings under the LU policy.

Organization of the paper. In section 2, we formally define the problem and review
the previous solutions given by Gafni and Bertsekas [10]. In section 3, we present our
general link reversal algorithm and prove its correctness. We also introduce the LU
policy for the initial link labeling. The work complexity of the general solution is then
analyzed in section 4. In section 5, we first show how our results can be specialized to
obtain results for Full Reversal and Partial Reversal, and then we study in more detail
the complexity of the LU policy. These findings support a game-theoretic comparison
of different initial link labelings, presented in section 6. In section 7, we compare our
results to those in [3, 4].

638 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

2. The destination orientation problem.

2.1. Notation and terminology. We consider directed graphs, or graphs for
short, of the form G = 〈V ∪ {D}, E〉: graph G has n + 1 nodes, one of which is a
specific node called the destination. For convenience, we refer to the destination as
node D, and we let V = {1, 2, . . . , n} be the remaining nodes. The link (i, j) in E is
said to be incident on both i and j and to be outgoing from i and incoming to j. A
node i is said to be a sink if all its incident links are incoming to i.

A chain is a sequence C of nodes i0, . . . , ik, k ≥ 1, such that for all m, with
0 ≤ m < k, either (im, im+1) or (im+1, im) is a link in E. A chain i0, . . . , ik is simple
if ij �= i� for 0 ≤ j, � ≤ k, except possibly for j = 0 and � = k. A path is a chain
i0, . . . , ik such that for all m satisfying 0 ≤ m < k, the link (im, im+1) is in E.

A chain c = i0, . . . , ik, where k ≥ 1, is said to be closed if ik = i0. A circuit is a
closed chain, and a cycle is a closed path. If G has no cycle, then it is acyclic.

Graph G is defined to be routable to destination D if its destination is D, it is
connected, it has no self-loops, and for each (i, j) in E, (j, i) is not in E.2 When the
destination is clear from the context we simply say the graph is routable.

Given two routable graphs G1 = 〈V1 ∪ {D}, E1〉 and G2 = 〈V2 ∪ {D}, E2〉, G2 is
called a reorientation of G1 if G1 and G2 have the same undirected support, in the
sense that V1 = V2, and there is a bijection f from E1 to E2 such that f((i, j)) is
either (i, j) or (j, i). The notion of being a reorientation is symmetric, in that G1 is
a reorientation of G2 if and only if G2 is a reorientation of G1.

Graph G is said to be D(estination)-oriented if it has the property that there
exists at least one path from each node in V to D. Then we consider the following
problem PD:

PD: Given a graph G routable to D, find a reorientation of G that is D-oriented.
As shown in [10], if G is acyclic, D-orientation can be characterized by the set of

sinks in G.
Proposition 2.1. Let G be an acyclic graph that is routable to node D. The

following conditions are equivalent: (i) G is D-oriented, (ii) node D is the one and
only sink of G.

This proposition leads to a promising strategy for solving PD. First, there is a
local criterion that implies that the graph is not D-oriented, namely whether a node
other than D is a sink. The second part of the strategy is “fighting” sinks—that is,
changing the direction of links incident to sinks—while maintaining acyclicity.

In order to implement this strategy in a distributed setting, we make the assump-
tion that a process is associated with each node of the graph, and for each node i
in V , the process associated with i can both (a) determine the direction of all the
links incident to i, and (b) change the direction of all incoming links incident to i.
In this case, any process associated with a sink can locally detect that the graph is
not D-oriented and then reverse some of its incoming links in order to no longer be a
sink. It remains to verify that this scheme maintains acyclicity and terminates.

In what follows, we work within the context of (a) and (b), and we identify a node i
with the process associated with i. Based on (a) and (b), we study various distributed
algorithms, according to the link reversal strategy used by sink nodes. We consider
the asynchronous executions of these link reversal algorithms: if node i is a sink at
some moment in an execution, then i is not required to execute a reversal immediately,

2The routing algorithms under consideration assign dynamically changing virtual directions to
the edges of an undirected graph that models bidirectional communication channels between nodes.
Thus it does not make sense for both (i, j) and (j, i) to be in the corresponding directed graph.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 639

but it has only to do so eventually. Hence, a link reversal algorithm admits multiple
asynchronous executions depending on the scheduler. Note that because two sinks
cannot be neighbors, all the links incident to some sink node i remain stable until i
makes a reversal.

2.2. The order-based approach by Gafni and Bertsekas. Following the
above strategy, Gafni and Bertsekas [10] provided two distributed algorithms, called
Full Reversal and Partial Reversal :

Full Reversal: At each iteration, some sinks other than D take steps. Each sink
that takes a step reverses the direction of all its incident links.

Partial Reversal: Each node i maintains a list containing incident links. Ini-
tially, the list is empty. Each time a neighbor j of i makes a reversal, i adds
the link between i and j to the list. At each iteration, some sinks other than
D take steps. Each sink that takes a step reverses the directions of all its
incident links that do not appear in its list, and then empties its list. If there
is no such incident link (that is, if the list is “full”), it reverses the directions
of all its incident links, and then empties its list.

It is easy to see that in every step of Full Reversal, acyclicity is maintained. In
sharp contrast, an elementary proof that Partial Reversal maintains acyclicity is not
obvious, and to the best of our knowledge no such proof existed before the proof given
in the preliminary version of this paper [7]. (Since then, an alternative proof has been
proposed in [22].) Indeed, the argument for proving acyclicity given in [10] is not
direct: Gafni and Bertsekas first stated that Full Reversal and Partial Reversal are
specializations of a general solution to an order-based problem that is dual to PD,
and then trivially derived acyclicity from the antisymmetry property of any ordering.

In more detail, their approach consists in embedding the directed graph into a
total order. Node i maintains a variable, denoted hi (for height), whose values are
drawn from a totally ordered set (A,<). The ordering between heights determines the
directions of links by the following basic rule: if hi < hj, then the link connecting i
and j is directed from j to i. Hence, sinks correspond to local minima with respect to
heights, and so each node i ∈ V (i �= D) is assigned to increase its height, when the
latter is a local minimum, according to some function gi; the height ofD never changes.
Under the assumption that each node can read the heights of all its neighbors, this
defines a distributed algorithm. The class of algorithms obtained by varying the total
ordering (A,<) and the update functions gi is denoted by IH (for Increasing Heights).
Gafni and Bertsekas then assumed A to be unbounded and placed a condition on the
asymptotic behavior of each gi. They proved that under these conditions, each IH
algorithm solves PD, and that the resulting D-oriented graph depends only on the
input graph.

Under the assumption of distinct identification numbers for nodes, Gafni and
Bertsekas claimed that Full Reversal and Partial Reversal coincide with two specific
IH algorithms. Namely, Full Reversal is expressed by representing the height of node i
as a pair (αi, idi) with αi being an integer and idi being the unique identifier of i. The
relation < is the lexicographical order, and the functions gi basically correspond to
transforming local minima into local maxima. For Partial Reversal, the height of i is
a triple (αi, βi, idi) where αi and βi are integers, and initially, αi = 0 for any node i.
The relation < is also the lexicographical order, and the functions gi transform any
local minimum into an intermediate value (not necessarily a local maximum). As
already mentioned in the introduction, while in the case of the pair algorithm, the
correspondence with Full Reversal is clear, it is more difficult to understand why

640 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

the triple algorithm actually implements Partial Reversal, and indeed, no proof of the
correspondence has been given in any work on the pair and triple algorithms [10, 3, 4].

3. The link reversal algorithm. In this section, we present a graph algorithm,
which we call the link reversal algorithm (or LR for short), that encompasses both
Full Reversal and Partial Reversal. To explain our graph-based approach, let us first
examine more closely how Partial Reversal runs: during each iteration, the directions
of some links are reversed by sinks and links are added and removed from the nodes’
lists. Starting from an initial graph G0, the iterations therefore produce a sequence of
directed connected graphs with the same support that we denote by G0, . . . , G�,
Further, for each node i, we obtain a sequence of lists containing links denoted by
i.list0, . . . , i.list�, Consider the graph and the lists after the �th iteration. One
observes that for any two neighbors i and j, i is in j.list� only if the link (i, j) is
directed from i to j in G�. Hence, for any �, after the �th iteration, one cannot have
i ∈ j.list� and j ∈ i.list�. Therefore, for each directed link from i to j in G�, there are
only two possible cases: on the one hand, i /∈ j.list� and j /∈ i.list�, or on the other
hand, i ∈ j.list� and j /∈ i.list�. Our basic idea is to code these two cases with labels �
and � on the link from i to j accordingly. We thus propose an algorithm which works
on directed graphs with binary labels for links, contrary to the IH algorithms which
assign unbounded labels (so-called heights) to nodes.

In more detail, we consider a graph G = 〈V ∪ {D}, E〉 and a function μ from E
to {�, �}, which gives the label of either � or � to each link of G. If a link is labeled
with �, we say that it is marked; otherwise, it is said to be unmarked. We denote
the resulting link-labeled graph as G† = 〈G,μ〉. The dagger superscript will be used
throughout to indicate such a link-labeled graph. If G is routable, then G† is said to
be a link-labeled routable graph. All the definitions given in section 2.1 above can be
clearly extended to link-labeled graphs.

The LR algorithm. For each sink node i other than D, one can apply the
following mutually exclusive rules:

R1: If at least one link incident on i is labeled �, then all the links incident on
node i that are labeled with � are reversed, the other incident links are not
reversed, and the labels on all the incident links are flipped.

R2: If all the links incident on node i are labeled �, then all the links incident
on i are reversed, but none of their labels is changed.

Note that in the context of networks with nodes being able to change the direc-
tions and the labels of their incoming links, the LR algorithm admits a distributed
implementation over the network. Then we say that node i takes a step when R1 or
R2 is applied at i. Given a link-labeled routable graph G†, any nonempty set S of
sinks in G† is said to be applicable to G†, as each node in S may “simultaneously” take
a step. Since two neighboring nodes in G† cannot both be a sink, the resulting graph
depends only on S and G† and is denoted by S.G†. In case S = {i}, we write i.G† for
short, instead of {i} .G†. By induction, we easily generalize the notion of applicability
to G† for a sequence S of a nonempty set of nodes, and we denote the resulting graph
by S.G†.

An execution of the LR algorithm from a link-labeled routable graph G†
0 is a

sequence G†
0, S1, G

†
1, . . . G

†
t−1, St, . . . of alternating link-labeled routable graphs and

sets of nodes satisfying the following conditions:
1. For each integer t, t ≥ 1, St is a subset of V that is applicable to G†

t−1.

2. For each integer t, t ≥ 1, G†
t equals St.G

†
t−1.

3. If the sequence is finite, then it ends with a link-labeled graph that contains
no sinks other than D.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 641

For each t ≥ 0, the transition from G†
t−1 to G†

t is called iteration t, and node i
in St is said to take a step at iteration t.

Since each St can be any nonempty subset of the sink nodes in G†
t−1 other than D,

there are multiple possible LR executions starting from the same initial graph: the
flexibility for the sets St actually captures asynchronous behaviors of the nodes. We
may thus model a range of situations, with one extreme being the maximally concur-
rent situation in which all sinks take a step at each iteration, and the other extreme
being a single node taking a step in each iteration. An LR execution G†

0, S1, G
†
1, . . .

G†
t−1, St, . . . , G

†
k that exhibits the maximal amount of parallelism is called greedy;

i.e., for all t, 1 ≤ t ≤ k, St consists of all the sinks in G†
t−1. Since the algorithm is

deterministic, there is exactly one greedy LR execution for a given initial link-labeled
routable graph G†

0.
Observe that if all labels are initially equal to �, then all links remain marked

during the whole execution, and only rule R2 is executed. The LR algorithm thus
coincides with Full Reversal. If initially all labels are �, the above description of the
Partial Reversal runs shows that LR executes as Partial Reversal. Our approach,
which consists in varying only the initial link labeling, thus unifies Full Reversal and
Partial Reversal.

3.1. Convergence and delay-insensitivity. In this section, we prove that LR
converges, i.e., from any given routable link-labeled graph, every execution of LR is
finite. Moreover, we show that the algorithm is delay-insensitive in the sense that the
final directed graph generated by the algorithm depends only on the input graph and
not on the scheduler. Note that by definition of the LR rules, the final graph has no
sink node, except possibly D.

Theorem 3.1. Any LR execution from a routable link-labeled graph is finite.
Proof. Assume for the sake of contradiction that there is an LR execution that

is infinite. Let X be the set of nodes that take an infinite number of steps, and let
Y be its complementary set in V ∪ {D}. By assumption, X �= ∅. As node D takes
no step, D is in Y and so Y �= ∅. Since the underlying undirected graph in the whole
execution is connected, there is a node i ∈ X and a node j ∈ Y such that either (i, j)
or (j, i) is a link of this graph.

Suppose, after the last step of j, that the link between j and i is directed toward j.
Then subsequently i never becomes a sink, contradicting the fact that i is in X and
thus takes infinitely many steps.

Suppose, after the last step of j, that the link between j and i is directed toward i.
Then after at most two subsequent steps by i, the link is directed toward j, and again
we get a contradiction.

As for delay-insensitivity, we first prove the following commutativity property.
Lemma 3.2. Let S be any subset of V , and let S = S1 ∪ S2 be a bipartitioning

of S with S1 and S2 both nonempty. If each node in S is a sink of G†, then S1 is
applicable to S2.G

†, S2 is applicable to S1.G
†, and S.G† = S1.(S2.G

†) = S2.(S1.G
†).

Proof. The result follows at once from rules R1 and R2 since S1 ∩ S2 = ∅, and
two neighboring nodes cannot both be in S.

Theorem 3.3. Let G†
0 be a routable link-labeled graph. A node i in G†

0 takes the

same number of steps in any LR execution from initial graph G†
0. Moreover, the final

graph depends only on G†
0.

Proof. Let E = G†
0, S1, G

†
1, S2, . . . , G

†
k be an LR execution from the initial

graph G†
0 in which a sink i other than D is delayed from taking a step; i.e., for

642 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

some t0, 1 ≤ t0 ≤ k − 1, node i is a sink of G†
t0−1, i is not in St0 , and i is in St0+1.

We now construct another execution E ′ in which we move up by one the iteration
at which sink i takes its step. For that, let S̃1, S̃2, . . . be the sequence of nonempty
subsets of V defined as follows:

1. If St0+1 = {i}, then

S̃t =

⎧⎨
⎩

St if 1 ≤ t ≤ t0 − 1,
St0 ∪ {i} if t = t0,
St+1 if t0 + 1 ≤ t ≤ k − 1;

2. else (St0+1 �= {i}), then

S̃t =

⎧⎨
⎩

St if 1 ≤ t ≤ t0 − 1 or t0 + 2 ≤ t ≤ k,
St0 ∪ {i} if t = t0,
St0+1 \ {i} if t = t0 + 1.

By Lemma 3.2, the sequence S̃1, S̃2, . . . is applicable to G†
0 and results in an LR

execution E ′ from G†
0. Moreover, each node takes the same number of steps in E ′ as

in E , and the final graphs are the same.
We then define the relation � on the (finite) set of LR executions from G†

0 as the
smallest transitive relation satisfying E � E ′. We immediately observe that for the
(unique) greedy LR execution Eg from G†

0, there is no execution E such that Eg � E .
Moreover, the above argument shows that for any LR execution E from G†

0 other than
the greedy execution Eg, there exists an LR execution E ′ with E � E ′. Therefore Eg is

the unique minimum of all LR executions from G†
0 with respect to �. It follows that

for each LR execution E from G†
0, every node i in G†

0 takes the same number of steps
in E as in Eg, and the final graphs of E and Eg are the same.

3.2. The acyclicity issue. We have thus shown that starting with a finite
routable input graph, whether acyclic or not, the algorithm converges, i.e., reaches
a state where there is no sink node other than D. However, “fighting sinks” is just
one part of the required solution, and it remains to study whether acyclicity can be
maintained by LR. For that, our strategy will consist in reducing certain properties
of the algorithm to invariants of the graph, or more precisely to invariants of circuits.

First, we introduce some additional notation. For a circuit C† = i0, . . . , ik−1, ik,
with k �= 0, let ��(C†) be the number of marked links (ij , ij+1), and let r�(C†) be
the number of marked links (ij+1, ij), for 0 ≤ j ≤ k − 1. Let s�(C†) be the number
of nodes in C† with two distinct incoming unmarked links relative to C†. Then we
define the following two measures ξ+(C†) and ξ−(C†):

ξ+(C†) = ��(C†) + s�(C†) and ξ−(C†) = r�(C†) + s�(C†).

These definitions capture two quantities that are invariant, as we show next. The
intuition is that any change to s� caused by a step is canceled out by a change to ��,
and similarly any change to s� is canceled out by a change to r�. The invariance of
ξ+(C†) and ξ−(C†) leads to a simple proof that acyclicity is preserved by LR.

Proposition 3.4. Let C† be any simple circuit in G†. For any node i, ξ+(i.C†) =
ξ+(C†) and ξ−(i.C†) = ξ−(C†).

Proof. If i is not a node of C†, then C† remains unchanged, i.e., i.C† = C†, and
the result immediately follows. Otherwise, i is a sink node of C†, and there are three
cases to consider depending on the labels of the two links incident to i in C†.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 643

1. None of the two links is marked. Then i executes R1 and both reverses and
marks the two links. Hence,

��(i.C†) = ��(C†) + 1, r�(i.C†) = r�(C†) + 1, s�(i.C†) = s�(C†)− 1.

2. The two links are marked. We then consider two subcases:
(a) Node i executes R1 and hence does not reverse either of them and un-

marks both of them. In this case, we have

��(i.C†) = ��(C†)− 1, r�(i.C†) = r�(C†)− 1, s�(i.C†) = s�(C†) + 1.

(b) Node i executes R2 and so reverses and marks both of them. We then
have

��(i.C†) = ��(C†)−1+1, r�(i.C†) = r�(C†)−1+1, s�(i.C†) = s�(C†).

3. If only one of the two incoming links of i that belong to C† is marked, then
i executes R1 and thus unmarks the marked link and reverses and marks the
other one. We thus have

��(i.C†) = ��(C†), r�(i.C†) = r�(C†), s�(i.C†) = s�(C†).

In all cases we check that ��(i.C†) + s�(i.C†) = ��(C†) + s�(C†) and r�(i.C†) +
s�(i.C†) = r�(C†) + s�(C†), and we thus conclude that ξ+(i.C†) = ξ+(C†) and
ξ−(i.C†) = ξ−(C†).

Proposition 3.5. If C† is a circuit such that

(AC) ξ+(C†) · ξ−(C†) > 0,

then C† is not a cycle.
Proof. Observe that if C† is a cycle, then s�(C†) = 0, and either ��(C†) = 0 or

r�(C†) = 0. It follows that condition (AC) is sufficient for guaranteeing that C† is
not a cycle.

From Propositions 3.4 and 3.5, we immediately derive the following acyclicity
result.

Theorem 3.6. If in the initial routable graph G†
0 every simple circuit satisfies

condition (AC), then all the directed graphs generated in any execution of LR starting

from G†
0 are acyclic.

Combining Theorems 3.1 and 3.6, we get the following corollary.
Corollary 3.7. Let G0 be any routable graph. If the initial link labeling of G0

is such that all the simple circuits in the resulting labeled graph G†
0 satisfy (AC), then

LR solves PD for G0.
In the case of Full Reversal, all labels are initially equal to �, which gives both

��(C†) �= 0 and r�(C†) �= 0 for any circuit C† that is not a cycle. In contrast,
s�(C†) �= 0 is guaranteed with the uniform � labeling (and so with Partial Reversal)
when C† is not a cycle.

More generally, condition (AC) naturally leads to the labeling policy where each
node i is allowed to choose μi ∈ {�, �} for the initial labels of all its incoming links.
We call this policy locally uniform and denote it by LU . The point of the LU policy
is to ensure condition (AC) for C† whenever C† is not a cycle: in C† there must be
at least one node i with two distinct incoming links relative to C†. If μi = �, then
s�(C†) > 0, while if μi = �, then ��(C†) > 0 and r�(C†) > 0.

644 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

Full Reversal and Partial Reversal correspond to the globally uniform choices;
i.e., for every node i, μi = � and μi = �, respectively. The LU initial labeling thus
builds a continuum between Full Reversal and Partial Reversal, including other link
reversal strategies that we analyze and compare in sections 5.2 and 6.

4. Work complexity. We now analyze the work complexity of the LR algo-
rithm. For each execution of LR, we define the work complexity of a node in an
execution to be the number of reversals performed by that node and define the global
work complexity to be the sum, over all nodes, of the work complexity of each node.
By Theorem 3.3, the work complexity depends only on the initial link-labeled graph
and not on executions.

We first extend the definitions for circuits introduced in section 3.2 to chains.
Since the initial graph is connected, for each node i there is a simple chain connecting i
and D. As LR does not affect the support of the initial graph and so does not affect
the connectivity, there is a simple chain connecting D and i with a stable support for
each i during any execution of LR. Such a simple chain is called a D-chain from i.
If each link along a D-chain is directed toward D, then the D-chain is said to be a
D-path. Further, we will denote by C(i, G†) the set of all D-chains from i with the
link directions and the link labels inherited from G†.

Due to the statement of theD-orientation problem, we say that for aD-chain from
i, the natural orientation is from i to D. For any D-chain C†, we define the residue
Res(C†) to be 1 if the first link (with respect to the natural orientation towardD) in C†

is unmarked and against the orientation, and 0 otherwise. As for circuits, we consider
the following two quantities ξ+(C†) = ��(C†)+s�(C†) and ξ−(C†) = r�(C†)+s�(C†),
and we define two additional quantities

δ(C†) = ξ+(C†)− ξ−(C†),
γ(C†) = ξ+(C†) + ξ−(C†) + Res(C†).

From the very definitions of δ(C†) and γ(C†), we immediately derive the following
proposition.

Proposition 4.1. For any D-chain C†, we have δ(C†) ≤ γ(C†). Moreover, if
C† is a D-path, then δ(C†) = γ(C†).

The previous proposition naturally leads us to consider the nonnegative quantity

ω(C†) = γ(C†)− δ(C†).

Now we study how γ(C†) and δ(C†) evolve along with executing LR.
Proposition 4.2. For any sink node i and any D-chain C†, we have

γ(i.C†) = γ(C†).

Proof. Let j and e be the first node and the first link in C†, respectively. There
are three possible cases:

1. Node i does not belong to C†. Then i.C† = C†, and thus γ(i.C†) = γ(C†)
trivially holds.

2. Node i belongs to C†, and i �= j. The same proof as for Proposition 3.4 shows
that in this case, ξ+(i.C†) = ξ+(C†) and ξ−(i.C†) = ξ−(C†). Consequently,
it remains to show that Res(i.C†) = Res(C†). If i is not a neighbor of j, then
the result follows immediately from the fact that in LR, nodes change the
state of incident links only. Otherwise, i is a neighbor of j, and the link e

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 645

between i and j is incoming to i since i is a sink node. Hence, Res(C†) = 0.
Depending on the label of e in C† and on whether R1 or R2 is executed, the
link e in i.C† is either unmarked and incoming to i, or it is outgoing and
marked. In both cases we have Res(i.C†) = 0 and thus Res(i.C†) = Res(C†)
as needed.

3. Node i is in C† and i = j. There are three possible subcases:
(a) The link e is unmarked in C†. Node i executes R1 and so reverses and

marks e. It follows that

Res(i.C†) = Res(C†)− 1, ��(i.C†) = ��(C†) + 1, r�(i.C†) = r�(C†).

As e is marked in i.C†, its reversal does not modify the quantity s�, that
is, s�(i.C†) = s�(C†).

(b) The link e is marked in C† and i executes R1. According to this rule,
i only unmarks e. In this case, Res(i.C†) = Res(C†) + 1. Moreover, we
have

��(i.C†) = ��(C†), r�(i.C†) = r�(C†)− 1, s�(i.C†) = s�(C†).

(c) The link e is marked in C† and i executes R2. Node i reverses and marks
e, and so Res(i.C†) = Res(C†). Moreover,

��(i.C†) = ��(C†) + 1, r�(i.C†) = ��(C†)− 1, s�(i.C†) = s�(C†).

In all cases we conclude that γ(i.C†) = γ(C†).
Since γ(C†) never changes, the key point now is to show that δ(C†) regularly

increases during any execution of LR. To do that, we are led to partition the set
of nodes V into three disjoint subsets: S�(G†) is the set of nodes, all of whose inci-
dent links are unmarked and incoming, S�(G†) is the set of nodes with no unmarked
incoming link, and D(G†) consists of the remaining nodes.

Proposition 4.3. Let i be a sink node and C† be any D-chain in G†. If i is not
the first node in C†, then δ(i.C†) = δ(C†). Otherwise, C† is in C(i, G†), and δ(i.C†)
is given by the following rule: if i is in S�(G†), then δ(i.C†) = δ(C†) + 2; else (i.e.,
i ∈ S�(G†) ∪D(G†)), δ(i.C†) = δ(C†) + 1.

Proof. If i does not belong to C†, then δ(i.C†) = δ(C†) trivially holds. Moreover,
as shown in the proof of Proposition 4.2, we have ξ+(i.C†) = ξ+(C†) and ξ−(i.C†) =
ξ−(C†) whenever i is a node in C† but is not the first one. This also gives δ(i.C†) =
δ(C†) in this case.

When i is the first node in C†, there are two cases to consider.
1. i ∈ S�(G†). In this case, i executes R2 and thus reverses and marks all its

incoming links. It follows that ��(i.C†) = ��(C†)+1 and r�(i.C†) = r�(C†)−1.
Thereby, δ(i.C†) = δ(C†) + 2.

2. i ∈ S�(G†) ∪ D(G†). Then i necessarily executes R1, and so unmarks but
does not reverse all of its marked incoming links, and reverses and marks the
others. Thus we have either

��(i.C†) = ��(C†) + 1 and r�(i.C†) = r�(C†)

or

��(i.C†) = ��(C†) and r�(i.C†) = r�(C†)− 1

according to the label of the first link in C†. In both cases, δ(i.C†) = δ(C†)+1.
In all cases the proposition holds.

646 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

Now we study how this node partitioning evolves during the execution of LR.
Proposition 4.4. If i is a sink node in G†, then S�(i.G†) = S�(G†) \ {i},

S�(i.G†) = S�(G†) ∪ (S�(G†) ∩ {i}), and D(i.G†) = D(G†).
Proof. Clearly, the step taken by i in LR cannot affect, in either direction or

label, the links incident to nodes that are outside the neighborhood of i. So let j
be any node in the neighborhood of i. We study where j migrates in the new node
partitioning of i.G†. There are two possible cases:

1. j = i. From the LR rules, it follows that i ∈ D(i.G†) or i ∈ S�(i.G†)
depending on whether i ∈ D(G†) or not.

2. There is a link e from j to i. Since i is a sink node, it follows that j /∈
S�(G†), i.e., j ∈ S�(G†) or j ∈ D(G†). In i.G†, there are only two possible
configurations for e: e remains an incoming link for i and is unmarked, or e
is an outgoing link for i and is marked. In both cases, the new configuration
of e cannot modify the status of j, i.e., if j ∈ S�(G†), then j ∈ S�(v.G†), and
if j ∈ D(G†), then j ∈ D(i.G†).

Thereby, when i makes a reversal, our node partitioning remains unchanged, except
in the migration of i from S� to S� in the case when i is initially a sink, and all links
incident to i are unmarked.

Both Propositions 4.3 and 4.4 trivially extend to the case when several sink nodes
make simultaneous reversals:

S�(S.G†) = S�(G†) \ S,
S�(S.G†) = S�(G†) ∪ (S�(G†) ∩ S

)
, and

D(S.G†) = D(G†).

We need one more definition before stating our main result. For each node i, we
consider the set of D-chains from i and define the quantity

ω(i, G†) = min
C†∈C(i,G†)

(
ω(C†)

)
.

As an immediate consequence of Propositions 4.2 and 4.3, we derive the following
lemma.

Lemma 4.5. The D-chains that achieve the minimum value of ω(C†) are the
same throughout the execution.

We can now prove our major theorem.
Theorem 4.6. In any execution of LR starting from some routable graph G†

0

whose simple circuits all satisfy (AC), the number of reversals made by any node i

is ω(i, G†
0)/2 + 1/2, ω(i, G†

0)/2, or ω(i, G†
0) if i ∈ S�(G†

0), i ∈ S�(G†
0), or i ∈ D(G†

0),
respectively.

Proof. Let us consider the following finite sequence of nonnegative integers
ω(i, G†

0), . . . , ω(i, G
†
k), as well as the subsequence ω(i, G†

0), . . . , ω(i, G†
ki
), obtained

when considering only the steps in which i makes a reversal. From Lemma 4.5, and
Propositions 4.2 and 4.3, it follows that the sequence ω(i, G†

0), . . . , ω(i, G
†
k) is nonin-

creasing and that the subsequence ω(i, G†
0), . . . , ω(i, G

†
ki
) is decreasing. More precisely,

we deduce from Propositions 4.2, 4.3, and 4.4 that the subsequence decreases regu-
larly: it decreases either by 1 the first time and then by 2 each later time if i ∈ S�(G†

0),

or by 2 each time if i ∈ S�(G†
0), or otherwise (i ∈ D(G†

0)) by 1 each time. Moreover,

the first value of this sequence is ω(i, G†
0). By Proposition 4.1, ω(i, G†

k) = 0 since

G†
k is D-oriented. The subsequence thus decreases from ω(i, G†

0) to 0, and then we
deduce the number of reversals made by i.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 647

In a more convenient form, Theorem 4.6 reads as follows: for each link-labeled
routable graph G†

0 whose simple circuits all satisfy (AC), the number of link reversals

made by node i in any execution starting from G†
0 is min

{
Φ(C†) : C† ∈ C(i, G†

0)
}
,

where

Φ(C†) =
{

r�(C†) + s�(C†) + Res(C†) if i ∈ S�(G†
0) ∪ S�(G†

0),

2r�(C†) + 2s�(C†) + Res(C†) if i ∈ D(G†
0).

5. Applications to LU labelings.

5.1. Work complexity of Full Reversal and Partial Reversal. From The-
orem 4.6, we deduce the exact formulas for the work complexities of Full Reversal and
Partial Reversal. For that, we first introduce additional notation. Given a DAG G,
for any node i we denote the set of all D-chains from i by C(i, G); for any C ∈ C(i, G),
let r(C) be the number of links in C that are directed away from D, and let s(C) be
the number of nodes in C which have two distinct incoming links relative to C. We
also define Res(C), the residue of C, to be 1 if the first link of C is directed toward i,
and to be 0 otherwise. Note that in the case of the uniform labeling � (Full Reversal),
both S� and D are empty, and so S� contains all the nodes other than D. As for the
uniform labeling � (Partial Reversal), S� and S� consist of all the sinks and all the
sources, respectively.

Corollary 5.1. Let G0 be a routable acyclic graph.
1. The number of reversals made by node i in any Full Reversal execution from

G0 is

min {r(C) : C ∈ C(i, G0)} .

2. The number of reversals made by node i in any Partial Reversal execution
from G0 is

min {s(C) +Res(C) : C ∈ C(i, G0)} if i is a sink or a source in G,
min {2s(C) +Res(C) : C ∈ C(i, G0)} otherwise.

As a consequence of this corollary, we now understand what properties of the
input graphs generate steps for Full Reversal and for Partial Reversal. In particular,
this leads us to design the two (directed) chains in Figure 5.1 for which there is a
large discrepancy between the global work complexities of Full Reversal and Partial
Reversal, respectively. Indeed, for the upper chain, the number of steps taken by Full

Reversal is n·(n+1)
2 , while it is n for Partial Reversal. In contrast, the global work

complexity of Full Reversal for the lower chain is n, while that of Partial Reversal is
2n − 2. Hence, Partial Reversal is worse by about a factor of 2 for this graph. The
results of section 6.3 imply that Partial Reversal is worse by at most a factor of 2 in
any graph.

5.2. Comparing LU link labelings. The findings discussed above do not
allow us to conclusively decide whether Full Reversal or Partial Reversal is the better
algorithm. Interestingly, most of the literature on link reversal routing (see, e.g.,
[21, 15, 9]) uses algorithms that operate similarly to Partial Reversal. So there seems
to be an implicit understanding that Partial Reversal is better. However, there is no
formal approach underpinning this intuition.

We now consider the 2n possible initial LU link labelings, and we compare the
work complexity for two adjacent LU labelings, i.e., two LU labelings that differ on

648 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

D i1 i2 i3 in

work in Full Reversal: 1 2 3 n n·(n+1)
2

work in Partial Reversal: 1 1 1 1 n

global

D i1 i2 i3 in

work in Full Reversal: 1 1 1 1 n

work in Partial Reversal: 1 2 2 1 2n− 2

global

Fig. 5.1. Example chains showing that neither Full Reversal nor Partial Reversal performs
better in general.

the labels of the incoming links of a single node. Step by step, we can then compare
Full Reversal (all links are labeled with �) and Partial Reversal (all links are labeled
with �).

Let the set of vectors M = {�, �}n; 	� and 	� denote the vectors in M whose
components all are � and �, respectively. For any vector 	μ ∈ M , let μi denote its ith
component. We consider a routable acyclic graph G = 〈V ∪{D}, E〉. The link-labeled
graph in which, for each node i ∈ V , all incoming links of i are labeled with μi, and
the links incoming to D are labeled with �,3 is denoted by G�μ. Similarly, let C�μ

denote the labeled D-chain from some node i in G�μ when C is a D-chain from i. As
every circuit of G�μ satisfies (AC), Theorem 4.6 provides node i’s work in executions
of LR starting with G�μ, denoted by σi(μ).

We now investigate the influence of i’s choice for μi first on its own work, and
then on the work of the other nodes. We denote by (μ−i, s) the vector in M which
results from replacing the ith component of 	μ by s. Further, we call a node i a good
node if there is a path from i to D; otherwise, i is called a bad node.

First, observe that for any node i and any vector 	μ ∈ M , we have i ∈ S�(G(�μ−i,�)).
Moreover, if i is neither a sink nor a source, then i ∈ D(G(�μ−i,�)). Combining this
remark with Theorem 4.6, we easily show the following proposition which formally
establishes that, from a selfish viewpoint, it is in the interest of i to choose μi = �.

Proposition 5.2. For every node i ∈ V , and any vector 	μ ∈ M , we have

σi(μ−i, �) ≥ σi(μ−i, �).

Further, if i is a sink or a source, then

σi(μ−i, �) = σi(μ−i, �).

Proof. There are three cases to consider:
1. If i is a source in G, then G(�μ−i,�) = G(�μ−i,�) and the proposition follows.
2. If i is a sink in G, then for all D-chains from i, denoted by C, we have

Res(C(�μ−i,�)) = Res(C(�μ−i,�)) + 1,

r�(C(�μ−i,�)) = r�(C(�μ−i,�))− 1.

3Theorem 4.6 shows that this choice has no influence on the work, and labeling with � instead
leads to the same results.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 649

We have by the partitioning that i ∈ S�(G(�μ−i,�)) and i ∈ S�(G(�μ−i,�)).
Consequently, from Theorem 4.6 it follows that σi(μ−i, �) = σi(μ−i, �), and
the proposition follows also in this case.

3. Otherwise, i has incoming and outgoing links in G. For each D-chain from i,
denoted by C, we have two possibilities:
(a) If the link in C incident to i is directed away from i, then C(�μ−i,�) =

C(�μ−i,�), and consequently r�(C(�μ−i,�)) = r�(C(�μ−i,�)), s�(C(�μ−i,�)) =
s�(C(�μ−i,�)), and Res(C(�μ−i,�)) = Res(C(�μ−i,�)).

(b) Otherwise, the link in C incident to i is directed toward i. We have
r�(C(�μ−i,�)) = r�(C(�μ−i,�))− 1, s�(C(�μ−i,�)) = s�(C(�μ−i,�)), and further
Res(C(�μ−i,�)) = Res(C(�μ−i,�)) + 1. In this case we obtain

2r�(C(�μ−i,�)) + 2s�(C(�μ−i,�)) + 1 ≥ r�(C(�μ−i,�)) + 1 + s�(C(�μ−i,�)).

In both situations (a) and (b) the following inequality holds:
(5.1)
2r�(C(�μ−i,�)) + 2s�(C(�μ−i,�)) + Res(C(�μ−i,�)) ≥ r�(C(�μ−i,�)) + s�(C(�μ−i,�)).

As i has incoming and outgoing links in G, it follows that i ∈ S�(G(�μ−i,�))
and i ∈ D(G(�μ−i,�)). From this, it follows by Theorem 4.6 that

σi(μ−i, �) = min
C(�μ−i,�)∈C(i,G(�μ−i,�))

(
r�(C(�μ−i,�)) + s�(C(�μ−i,�))

)

and

σi(μ−i, �) =

min
C(�μ−i,�)∈C(i,G(�μ−i,�))

(
2r�(C(�μ−i,�)) + 2s�(C(�μ−i,�)) + Res(C(�μ−i,�))

)
.

Combining this with (5.1) proves the proposition in this case.
In all the cases the proposition holds.

We show next that the damage caused by the choice of 	μi = � on the work of i is
limited by the factor 2.

Proposition 5.3. For every node i ∈ V , and any vector 	μ ∈ M ,

σi(μ−i, �) ≤ 2 · σi(μ−i, �).

Proof. For sinks and sources the proposition follows from Proposition 5.2. We
now consider a node i that is neither a sink nor a source. For each D-chain from i,
denoted C, we have two cases:

(a) If the link in C incident to i is directed away from i, we haveRes(C(�μ−i,�)) = 0,
r�(C(�μ−i,�)) = r�(C(�μ−i,�)), and s�(C(�μ−i,�)) = s�(C(�μ−i,�)).

(b) Otherwise, the link in C incident to i is directed toward i. In this case, we
have Res(C(�μ−i,�)) = 1, r�(C(�μ−i,�)) = r�(C(�μ−i,�)) + 1, and s�(C(�μ−i,�)) =
s�(C(�μ−i,�)).

Trivially, we obtain

2r�(C(�μ−i,�)) + 2s�(C(�μ−i,�)) + 1 ≤ 2 ·
(
r�(C(�μ−i,�)) + 1 + s�(C(�μ−i,�))

)
,

from which it follows for both cases (a) and (b) that

(5.2) 2r�(C(�μ−i,�))+2s�(C(�μ−i,�))+Res(C(�μ−i,�)) ≤ 2·
(
r�(C(�μ−i,�)) + s�(C(�μ−i,�))

)
.

650 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

As node i has both incoming and outgoing links in G, it follows that i ∈ S�(G(�μ−i,�))
and i ∈ D(G(�μ−i,�)). From this, it follows by Theorem 4.6 that

σi(μ−i, �) = min
C(�μ−i,�)∈C(i,G(�μ−i,�))

(
r�(C(�μ−i,�)) + s�(C(�μ−i,�))

)

and

σi(μ−i, �) = min
C(�μ−i,�)∈C(i,G(�μ−i,�))

(
2r�(C(�μ−i,�)) + 2s�(C(�μ−i,�)) + Res(C(�μ−i,�))

)
.

Combining this with (5.2) finally proves the proposition.
On the contrary, the next proposition states that if a node j other than i changes

its incoming labels from � to �, the work performed by i either stays the same or
increases.

Proposition 5.4. For any two different nodes i and j, and any vector 	μ ∈ M ,

σi(μ−j , �) ≤ σi(μ−j , �).

Proof. As μj has influence only on the labels of incoming links of j, and because
j �= i, for each D-chain C from i, Res(C(�μ−j ,�)) = Res(C(�μ−j ,�)). If j is not part of a
D-chain from i, the labels of its incoming links have no influence on i’s work, and we
are done. So we suppose that j is a node on a D-chain C from i, and we distinguish
four cases:

• If j has two outgoing links relative to C, then we have C(�μ−j ,�) = C(�μ−j ,�).
We obtain s�(C(�μ−j ,�)) + r�(C(�μ−j ,�)) = s�(C(�μ−j ,�)) + r�(C(�μ−j ,�)).

• j has two incoming links relative to C. If μj = �, then s� is augmented;
otherwise, the link directed toward i augments r�. We obtain s�(C(�μ−j ,�)) =
s�(C(�μ−j ,�)) + 1 and r�(C(�μ−j ,�)) = r�(C(�μ−j ,�)) − 1 and further obtain
s�(C(�μ−j ,�)) + r�(C(�μ−j ,�)) = s�(C(�μ−j ,�)) + r�(C(�μ−j ,�)).

• j has one incoming link relative to C, and it is directed toward D. The
mark of this link has influence only on ��. Again, we obtain s�(C(�μ−j ,�)) +
r�(C(�μ−j ,�)) = s�(C(�μ−j ,�)) + r�(C(�μ−j ,�)).

• j has one incoming link relative to C, and it is directed toward i. The mark of
this link has influence only on r�. We obtain r�(C(�μ−j ,�)) + 1 = r�(C(�μ−j ,�)).

Thus, we obtain s�(C(�μ−j ,�))+r�(C(�μ−j ,�)) ≤ s�(C(�μ−j ,�))+r�(C(�μ−j ,�)) for all chains
C, and the proposition follows.

Repeated application of Proposition 5.4 leads to the following corollary.
Corollary 5.5. For every node i ∈ V , and any two vectors 	μ and 	ν in M such

that for all j ∈ V , μj ≤ νj and μi = νi, it holds that σi(μ) ≤ σi(ν).
Finally, we show that when using the LU policy, whether a node has to perform

reversals depends solely on the initial directed graphG (and not on G�μ). In particular,
if there is a labeling inM for which node i performs no reversal, then for every labeling
in M , i makes no reversal.

Proposition 5.6. For each node i ∈ V , the following statements are equivalent:
(1) for all 	μ ∈ M : σi(μ) = 0.
(2) there is a 	μ ∈ M : σi(μ) = 0.
(3) i is a good node (i.e., there is a path from i to D).
Proof. Trivially, (1) implies (2).
If (2) holds for some 	μ ∈ M , then Theorem 4.6 shows that there is a D-chain

from i, denoted by C, such that C�μ satisfies r�(C�μ)+s�(C�μ)+Res(C�μ) = �. Therefore
r�(C�μ) = s�(C�μ) = Res(C�μ) = 0. We now argue that C is a path from i to D.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 651

Suppose, by way of contradiction, that there is a link e in C directed toward i.
As r�(C�μ) = �, all links, including e, that are directed toward i must be unmarked.
Moreover, from Res(C�μ) = 0 we deduce that the first link in C�μ is directed toward D.
Hence the latter link and e are directed in the opposite direction, and so there exists
a node j with two distinct incoming links relative to C�μ. Since r�(C�μ) = 0, 	μj = �.
Therefore, node j has two unmarked incoming links relative to C�μ, and so s�(C�μ) > 0.
This provides the required contradiction and shows that (2) implies (3).

If (3) holds, then there exists a simple chain C which is a path from i toward D.
From the definitions of r�, s�, and Res, we immediately obtain that for any vector
	μ ∈ M , r�(C�μ) = s�(C�μ) = Res(C�μ) = 0. This shows that (3) implies (1).

6. The LU policy as a game. By Propositions 5.2, the work by node i may be
decreased by labeling its incoming links with �, while Proposition 5.4 shows that this
might increase the work of other nodes. This kind of conflicting interests is exactly
what is handled by game theory. We are thus naturally led to model the LU policy as
a game: to each node i we associate a player who chooses a value in {�, �} for μi, and
the cost incurred by player i is given by the work done by node i. In doing so, game-
theoretic analysis allows us to manage the contradictory interests of the players/nodes
and to precisely compare the different initial LU labelings. In particular, we provide
a rigorous comparison of Full Reversal and Partial Reversal, which correspond to the
special vectors 	� and 	�, respectively.

6.1. Game-theoretic definitions. The LU game consists of the set V of n
players . Each player i selects a pure strategy μi ∈ {�, �}, and we form the vector
	μ = (μ1, μ2, . . . , μn), called a pure profile. For a given routable graph, the profile
	μ entirely determines the work for each player/node. We naturally consider for each
player i the cost σi(μ) incurred by node i, which is the work that i has to perform in
LR starting from G�μ.

We first recall some basic notions from game theory [20, 19]. A pure Nash equi-
librium is a pure profile 	μ of the game where no player can prefer a different strategy
if the current strategies of the other players are fixed:

∀i ∈ V, ∀s ∈ {�, �} : σi(μ−i, s) ≥ σi(μ).

A pure Nash equilibrium thus represents a profile where, from a local and selfish
viewpoint, each player i has no motivation to change its strategy. A pure Nash
equilibrium is based on local conditions and so is not necessarily the best possible
profile, in the sense that all players incur minimum cost. Such a best pure profile 	μ
is called a global optimum:

∀i ∈ V, ∀	ν ∈ M : σi(μ) ≤ σi(ν).

Further, we investigate whether the LU game is a potential game [16]: a function
P : M → R is a potential function for a game if

∀i ∈ V, ∀	μ ∈ M, ∀s ∈ {�, �} : σi(μ)− σi(μ−i, s) > 0 ↔ P (μ)− P (μ−i, s) > 0.

A game is then called a potential game if it admits a potential function. It was shown
by Monderer and Shapley [16] that every potential game has a pure Nash equilibrium.
In general, however, the existence of a pure Nash equilibrium is not guaranteed.
Interestingly, Proposition 5.2 exactly expresses the fact that Full Reversal is a pure
Nash equilibrium. However, we show that the LU game is not a potential game.

652 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

D i j k

j
� �

i
�

(1, 1) (1, 1)
U V

�
(1, 3) (1, 2)
W X

Fig. 6.1. An example graph, with a table of the subgame of players i and j.

To evaluate the overall quality of a pure profile 	μ, we consider the social cost ,
which is the sum of the costs incurred by all players:

SC (μ) =
∑
i∈V

σi(μ).

Clearly, SC (μ) is the global work complexity of the LR algorithm starting from G�μ.
While a global optimum does not necessarily exist, there is always a pure profile with
minimum social cost among all profiles.

Further, we are interested in measuring the increase in the social cost when the
profiles result from selfish choices— that is, pure Nash equilibria— instead of the
choices of the profiles with minimum social cost. Koutsoupias and Papadimitriou [13]
introduced the price of anarchy, which captures this notion. In this paper we consider
the pure price of anarchy, which is defined as the ratio between the worst social cost
of a pure Nash equilibrium and the minimum social cost among all profiles. In the
following we show that, with respect to the social cost, Full Reversal corresponds
to the worst pure Nash equilibrium. For our game, finding the price of anarchy thus
coincides with studying how much worse Full Reversal is than a profile with minimum
social cost.

6.2. Properties of strategy profiles. We now show that the LU game is not
a potential game, using the example given in Figure 6.1: the pairs in the table are the
cost pairs (σi(μ), σj(μ)) for the profiles 	μ = (μi, μj). As μk has no influence on the
cost incurred by i and j, we may omit it in the following discussion. The uppercase
letters represent values of a function f : M → R. We just have to show that no
such function f can be a potential function. As σi(�, �) = σi(�, �), we require from
the definition of a potential function that U = W . Similarly, σi(�, �) = σi(�, �),
σj(�, �) = σj(�, �), which implies V = X , U = V , and consequently W = X .
However, as σj(�, �) > σj(�, �) we require W > X , a contradiction. We thus conclude
that for certain graphs, there is no potential function, and thus LU is not a potential
game.

We continue our investigation of the LU game by the following theorem, which
provides the exact characterization of pure Nash equilibria.

Theorem 6.1. The profile 	μ is a pure Nash equilibrium if and only if for all
nodes i it holds that i is a sink, or i is a source, or μi = �, or σi(μ) ≤ 1.

Proof. First we show that if i is a sink in G, or i is a source in G, or μi = �, or
σi(μ) ≤ 1, then for all s in {�, �}, σi(μ−i, s) ≥ σi(μ). If μi = �, then the claim is
a straightforward consequence of the first part of Proposition 5.2. If i is a source or
a sink in G, then the claim directly follows from the second part of Proposition 5.2.
Finally, suppose σi(μ) ≤ 1, that, is σi(μ) = 0 or σi(μ) = 1. If σi(μ) = 0, then clearly,
i’s work is already minimum. If σi(μ) = 1, then Proposition 5.6 implies that i is a

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 653

bad node, and that for any initial link labeling, i must take at least one step. We
conclude that if i is a sink or a source, μi = �, or σi(μ) ≤ 1, then for any s in {�, �},
we obtain σi(μ−i, s) ≥ σi(μ).

Consequently, if for each node i one of these requirements holds, then for each i
we have that for all s in {�, �}, σi(μ−i, s) ≥ σi(μ); i.e., 	μ is a pure Nash equilibrium.

Conversely, assume that 	μ is a pure Nash equilibrium. Further, assume by way
of contradiction that there is some node i which is neither a sink nor a source in G,
μi = �, and σi(μ) > 1. We will show that changing node i’s strategy to � causes i
to take fewer than σi(μ) steps, implying that 	μ is not a pure Nash equilibrium. As
i ∈ D(G�μ) and σi(μ) > 1, Theorem 4.6 implies that for every D-chain C from i,

2r�(C�μ) + 2s�(C�μ) + Res(C�μ) > 1.

Consequently, r�(C�μ) > 0 or s�(C�μ) > 0. We now show that

(6.1) 2r�(C�μ) + 2s�(C�μ) + Res(C�μ) > r�(C(�μ−i,�)) + s�(C(�μ−i,�)).

There are two cases to consider:
1. The first link in C is directed away from i. We have

r�(C�μ) = r�(C(�μ−i,�)), s�(C�μ) = s�(C(�μ−i,�)), and Res(C�μ) = 0.

From the fact that r�(C�μ) > 0 or s�(C�μ) > 0, we derive that (6.1) holds.
2. The first link in C is directed toward i. Then

r�(C�μ) + 1 = r�(C(�μ−i,�)), s�(C�μ) = s�(C(�μ−i,�)), and Res(C�μ) = 1.

Since r�(C�μ) > 0 or s�(C�μ) > 0, we obtain

2r�(C�μ) + 2s�(C�μ) + 1 > r�(C�μ) + 1 + s�(C�μ),

which implies that (6.1) holds also in this case.
We observe that i ∈ S�(G(�μ−i,�)) and Res(C(�μ−i,�)) = 0. From Theorem 4.6 and

as i ∈ D(G�μ), it follows that

σi(μ) = min
C�μ∈C(i,G�μ)

(
2r�(C�μ) + 2s�(C�μ) + Res(C�μ)

)
.

As i ∈ S�(G(�μ−i,�)), we obtain

σi(μ−i, �) = min
C(�μ−i,�)∈C(i,G(�μ−i,�))

(
r�(C(�μ−i,�)) + s�(C(�μ−i,�))

)
.

Combined with inequality (6.1), this implies that σi(μ) > σi(μ−i, �), and 	μ is not a
pure Nash equilibrium, which provides the required contradiction.

The conditions in Theorem 6.1 are rather different in nature: whether some node
is a sink or a source solely depends on the graph and not on the strategy, contrary
to the condition μi = �. The final condition σi(μ) ≤ 1 is hybrid: Proposition 5.6
shows that good nodes never take steps independently of the profile and thus always
satisfy σi(μ) = 0. Further, Theorem 4.6 shows that under LU , a bad node which is
a neighbor of a good node always incurs a cost equal to 1. Such nodes thus satisfy
this condition for any profile 	μ. Other nodes may satisfy the latter condition, but

654 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

D
� � � � � � �

Fig. 6.2. A global optimum other than �� and ��.

this depends on both the directed graph and the strategies of the other players, as
exemplified in Figure 6.2, where each node makes exactly one reversal.

Theorem 6.1 implies that for the graph given in Figure 6.2, the indicated labeling
is a pure Nash equilibrium. In fact, it is a global optimum as for each node i, σi(μ) = 1.
Figure 6.2 thus provides an example of a graph for which neither Full Reversal nor
Partial Reversal is the best strategy. More generally, determining the best strategies
requires the knowledge of the whole graph, which is not available to the nodes in a
distributed setting. So from a practical viewpoint, the flexibility offered by LU in
the initializations of link labels is not interesting a priori. However, the LU labelings
form a continuum between Full Reversal and Partial Reversal that helps significantly
in the analysis and comparison of Full Reversal and Partial Reversal, as shown below.

Contrary to the profile 	�, the profile 	� is not necessarily a pure Nash equilibrium:
for instance, consider the directed graph (D-chain) in Figure 6.2 and apply Theo-
rem 6.1. However, we show that from a global viewpoint, i.e., with respect to the
social cost, 	� indeed has advantageous properties compared to	�. We start by proving
that 	� is the worst pure Nash equilibrium in terms of social cost.

Theorem 6.2. If the profile 	μ is a pure Nash equilibrium, then for all nodes i,

σi(μ) ≤ σi(�).

Proof. By Theorem 6.1, for every node i it holds that (1) i a sink or a source, or
(2) μi = �, or (3) σi(μ) ≤ 1. We consider the following three cases:

1. Node i is a sink or a source in graph G. From Proposition 5.2 it follows that
σi(�−i, μi) = σi(�). By Corollary 5.5, σi(μ) ≤ σi(�−i, μi) and, consequently,
σi(μ) ≤ σi(�).

2. μi = �. In this case, Corollary 5.5 directly implies that σi(μ) ≤ σi(�).
3. σi(μ) ≤ 1. We consider the two cases σi(μ) = 0 and σi(μ) = 1. If σi(μ) = 0,

then the theorem trivially holds. If σi(μ) = 1, then as a direct consequence
of Proposition 5.6, we obtain σi(μ) ≤ σi(�).

In all three cases, the theorem holds.
Corollary 6.3. If the profile 	μ is a pure Nash equilibrium, then SC (μ) ≤ SC (�).
We now bound the ratio between the social cost of 	� and the social cost of any

profile. Combining the two latter results, we derive an upper bound on the pure price
of anarchy, which we prove to be tight.

First, we introduce additional notation. Let nB be the number of bad nodes, and
let R denote the maximum of the works of nodes in Full Reversal, i.e., for 	�. Let us
recall that Corollary 5.1 gives R as the following function of the graph:

R = max
i∈V

(
min

C∈C(i,G)
(r(C))

)
.

Theorem 6.4. For all 	μ ∈ M it holds that

SC (�)

SC (μ)
≤ R ·

(
1− R− 1

2nB

)
.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 655

D

Fig. 6.3. Chain that maximizes the social cost of Full Reversal for R = 5 and nB = 7.

Proof. Let n� denote the number of nodes i with σi(�) = � for 0 ≤ � ≤ R. The
number of bad nodes nB is then given by

nB =

R∑
�=1

n�.

Moreover, V = S�(G��), and we obtain

(6.2) SC (�) =

R∑
�=1

� · n�.

For given R and nB, one maximizes SC (�) by constructing a graph in which as many
nodes as possible make R steps.

Since the number of steps by a node i in Full Reversal is the maximum, over all
D-chains from i, of the number of links directed away from D, it follows that a node
with work x has only neighbors with work x, x+1, or x−1. Thus a node with work R
can only be reached from D by a chain of nodes, along which the work increases by
at most one at each node. Thus, SC (�) is maximized by a chain in which the R links
closest to D are directed away from D, and the remaining nB − R links are directed
toward D (cf. the chain given in Figure 6.3). In such a chain, the nB − (R− 1) nodes
farthest from D all have work R, while the other nodes have work 1, 2, . . . , R − 1,
respectively. Consequently, the social cost is bounded by

SC (�) ≤ R · (nB − (R− 1)) +

R−1∑
�=1

� = R · (nB −R+ 1) +
R · (R− 1)

2
.

Besides, from Proposition 5.6, it follows that for any pure profile 	μ, each bad node
must take at least one step, and consequently that

SC (μ) ≥ nB.

We obtain that

SC (�)

SC (μ)
≤ R− R · (R− 1)

2nB

and the theorem follows.
Corollary 6.5. The pure price of anarchy is less than or equal to R ·(1− R−1

2nB

)
.

6.3. Partial Reversal: A socially conscious choice. Now, we focus on the
pure profile 	� (Partial Reversal) in the LU game. First, we establish that when 	� is a
pure Nash equilibrium, it is a global optimum. As a result, we show that the bound
on the pure price of anarchy in Corollary 6.5 is actually tight. Then, we establish
that the social cost of 	� is at most twice the optimal social cost.

Theorem 6.6. If 	� is a pure Nash equilibrium, then 	� is a global optimum.
Proof. We show that if 	� is a pure Nash equilibrium, then for any node i and any

profile 	μ, σi(�) ≤ σi(μ). There are two cases to consider:

656 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

1. Node i has both incoming and outgoing links. Since 	� is a pure Nash equi-
librium, it follows from Theorem 6.1 that σi(�) ≤ 1. By Proposition 5.6, it
holds that σi(�) ≤ σi(μ).

2. Node i is a sink or a source. By Proposition 5.2, σi(�−i, μi) = σi(�). From
Corollary 5.5, it follows that σi(�−i, μi) ≤ σi(μ), and thus σi(�) ≤ σi(μ).

In both cases, the theorem holds.
Consider a graph which is a chain withD as an extremity, and all links are oriented

away from D. From Theorem 4.6, we obtain SC (�) = n·(n+1)
2 , while SC (�) = n. The

profile 	� is a pure Nash equilibrium since for each node i, σi(�) = 1, and so 	� achieves
the minimum social cost. Thereby the pure price of anarchy is equal to n+1

2 . Since
n = nB = R, the bound in Corollary 6.5 is tight.

Hence the social cost of 	� (Full Reversal) may be worse than 	� (Partial Reversal)
by some factor Θ(n). In Figure 5.1, we gave an example of a graph for which the
social cost of Partial Reversal is less than twice the social cost of Full Reversal. We
are now in position to prove that in fact, this maximal ratio of 2 holds for any graph.

Theorem 6.7. For any profile 	μ ∈ M , it holds that SC (�) ≤ 2 · SC (μ).
Proof. Let i be any node in V . From Corollary 5.5, it follows that σi(�−i, μi) ≤

σi(μ). Moreover, by Proposition 5.3, σi(�) ≤ 2 · σi(�−i, μi). Consequently, σi(�) ≤
2 · σi(μ), and the theorem follows.

6.4. Properties of mixed strategy profiles. Until now, we have studied de-
terministic strategies in order to compare the work complexity of different initial
link labelings. A natural question is whether random link labelings have interesting
properties. To investigate this, we consider the mixed version of the LU game: by
assigning a probability to each pure strategy of a player, one obtains a mixed strategy
and considers the expected cost of this profile. As we still assume locally uniform
labelings, (AC) is satisfied.

More precisely, each player i selects a mixed strategy μ∗
i ∈ [0, 1] in the sense that

strategy � is chosen with probability μ∗
i . The vector 	μ∗ = (μ∗

1, μ
∗
2, . . . , μ

∗
n) is called a

mixed profile. We denote by M∗ the set of all mixed strategy profiles. Given a mixed
profile 	μ∗, a specific pure profile 	μ occurs with probability P (μ, 	μ∗); its value is given
by

(6.3) P (μ, 	μ∗) =
∏

i:μi=�

μ∗
i ·

∏
i:μi=�

(1− μ∗
i) =

n∏
i=1

(
1− μi + (−1)1−μi · μ∗

i

)
.

From this, we obtain the expected cost incurred by player i in the mixed profile 	μ∗ as

(6.4) σ̄i(μ
∗) =

∑
�μ∈M

P (μ, 	μ∗) · σi(μ).

The mixed profile 	μ∗ is a (mixed) Nash equilibrium if

∀i ∈ V, ∀p ∈ [0, 1] : σ̄i(μ
∗
−i, p) ≥ σ̄i(μ

∗).

Nash [18] showed that every finite mixed game has an equilibrium. As shown above,
the LU game always has a pure Nash equilibrium.

A natural question is whether there are mixed Nash equilibria that are different
from pure ones. To provide some insight toward answering this question in general, we
first consider a pure equilibrium 	μ and some initial sink j. We will show that from 	μ
we can find additional mixed equilibria just by varying the mixed strategy of j. From

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 657

Proposition 5.2, we see that if the other strategies are fixed, the cost incurred by an
initial sink is the same no matter which pure strategy the sink uses (� or �). Further, if
some initial sink j is on some D-chain from another node i, then changing j’s strategy
from � to � causes s� to decrease by 1 and r� to increase by 1. Thus, Theorem 4.6
implies that j’s strategy has no influence on the costs incurred by any node in the
pure game. As the expected cost in the mixed game is just the weighted sum of the
costs in the pure game, we obtain for any mixed profile 	ν∗, any player i, and any
mixed strategy p ∈ [0, 1] that σ̄i(ν

∗
−j , p) = σ̄i(ν

∗) if j is an initial sink. Consequently,
if j is an initial sink and the function y �→ σ̄i(ν

∗
−i, y) is minimized at some u, then

for any p ∈ [0, 1], the function y �→ σ̄i((ν
∗
−j , p)−i, y) is minimized at u. It follows that

if 	μ is a pure Nash equilibrium, 	μ∗ is the mixed equivalent4 of 	μ, and j is an initial
sink, then for any p ∈ [0, 1] the mixed profile (μ∗

−j , p) is a mixed equilibrium. As

there is always a pure equilibrium in the LU game (namely 	�), it follows that for any
initial graph with at least one sink other than D, there are (infinitely many) mixed
equilibria different from pure ones.

However, such additional equilibria are not particularly interesting, as they pro-
vide additional favorable choices only for players whose choices do not influence the
cost incurred by any player. We now show that generally all mixed equilibria that
are different from pure ones are not interesting and that therefore randomization does
not help here.

As the cost incurred by player i in a mixed profile is the weighted sum of the costs
incurred by player i in all the pure strategy profiles, we directly obtain the following
from Proposition 5.2.

Proposition 6.8. For any node i and any mixed profile 	μ∗ ∈ M∗,

σ̄i(μ
∗
−i, 0) ≥ σ̄i(μ

∗
−i, 1).

Using this corollary, we can prove the following theorem, which characterizes the
nature of the mixed Nash equilibria in this game.

Theorem 6.9. If 	μ∗ is a mixed Nash equilibrium and there is some i ∈ V with
μ∗
i ∈]0, 1[, then for any p ∈ [0, 1], (μ∗

−i, p) is a mixed Nash equilibrium.
Proof. Consider by way of contradiction that 	μ∗ is a mixed Nash equilibrium

and i is a player with μ∗
i in]0, 1[, but there is some p ∈ [0, 1] such that 	ν∗ = (μ∗

−i, p)
is not a mixed Nash equilibrium. As 	ν∗ is not an equilibrium, there must be some
index j and some q ∈ [0, 1] such that σ̄j(ν

∗
−j , q) < σ̄j(ν

∗). The function f defined by
f(u) = σ̄i(μ

∗
−i, u) is linear due to (6.3) and (6.4). From this, and since 	μ∗ is a mixed

Nash equilibrium—that is, f has its global minimum at μ∗
i ∈]0, 1[— it follows that

the function f is constant. Therefore, from σ̄j(ν
∗
−j , q) < σ̄j(ν

∗) it follows that j �= i.
We obtain

(6.5) ∃j ∈ V, ∃q ∈ [0, 1] : i �= j ∧ σ̄j(ν
∗
−j , q) < σ̄j(ν

∗).

We now fix such a node j. To derive a contradiction, we consider the expected cost
incurred by j in 	μ∗, 	ν∗, and (ν∗−j , q) for various values of q ∈ [0, 1]. These profiles differ
only in the strategies of i and j. Therefore, we may limit ourselves to considering
a subgame between these two players, where x ∈ [0, 1] and y ∈ [0, 1] represent the
possible mixed strategies of i and j, respectively. We denote by

σ̂j(x, y) = σ̄j

((
	μ∗
−i, x

)
−j

, y
)

4That is, if μi = �, then μ∗
i = 1, and otherwise μ∗

i = 0.

658 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

the expected cost incurred by j in the subgame when i plays x and j plays y.
To derive an explicit formula for σ̂j(x, y), we first define the pure version of

the subgame, where i and j have the pure strategies si ∈ {0, 1} and sj ∈ {0, 1},
respectively. The cost incurred by j in the pure subgame is the expected cost of the
original n-player game when i plays si and j plays sj , while the others play as in any
of the profiles under consideration (see, e.g., 	μ∗). For the four pure strategy profiles
of this subgame, we denote the cost incurred by j as

a = σ̂j(0, 0), b = σ̂j(1, 0), c = σ̂j(0, 1), d = σ̂j(1, 1).

From these costs, σ̂j(x, y) is obtained by weighting the cost incurred by j in a
pure strategy profile by the probability that this profile occurs, given x and y:

σ̂j(x, y) = (1− x) · (1− y) · a+ (1− x) · y · b+ x · (1− y) · c+ x · y · d
= (a− b+ d− c) · x · y + (b− a) · y + (c− a) · x+ a.

Evidently, this function is linear in y, and y’s coefficient can be rewritten as

(6.6) (b− a) · (1− x) + (d− c) · x.

Because by Proposition 6.8, b− a ≤ 0 and d− c ≤ 0, it follows from (6.6) for any
x that y �→ σ̂j(x, y) is nonincreasing. If the function g defined by g(y) = σ̂j(ν

∗
i , y) =

σ̄j(ν
∗
−j , y) is constant, then we reach a contradiction to (6.5).
So we consider the other case, that is, g is strictly decreasing. From this, it

follows by (6.6) that a > b or c > d. From this and (6.6) it follows for any x ∈]0, 1[
that the function y �→ σ̂j(x, y) is strictly decreasing. In particular, as μ∗

i ∈]0, 1[,
the function h defined by h(y) = σ̂j(μ

∗
i , y) = σ̄j(μ

∗
−j , y) is strictly decreasing and

therefore minimized at 1. As 	μ∗ is a Nash equilibrium, h is minimized at μ∗
j and

since h is strictly decreasing, it follows that μ∗
j = 1. The function g is also strictly

decreasing and minimized at 1, and since μ∗
j = ν∗j , it follows that ν∗j minimizes g.

By the definition of g, this means that for any r ∈ [0, 1] we have σ̄j(ν
∗
−j , r) ≥ σ̄j(ν

∗),
which contradicts (6.5).

7. Comparison with previous work. Busch, Surapaneni, and Tirthapura
[3, 4] initiated the study of the work complexity of the link reversal algorithms pre-
sented in [10]. More precisely, they considered the pair and triple algorithms in their
analysis. Regarding the triple algorithm, they considered any initializations of the
triples, while—as discussed in section 2.2—Gafni and Bertsekas [10] claimed corre-
spondence between Partial Reversal and the triple algorithm only for special initializa-
tions of the latter, namely, if for each process i the height (αi, βi, idi) initially satisfies
αi = 0. In fact, in the case where initially there are different α values, executions of
the triple algorithm are similar to Partial Reversal executions only after a preliminary
phase during which the α values are aligned. This preliminary phase is reflected in
the work complexity theorems by Busch, Surapaneni, and Tirthapura by a value α∗

that is the difference between the minimal and maximal initial α values. If one wants
to obtain results for Partial Reversal from their theorems, one has to set α∗ to 0; i.e.,
all the initial α values are equal (under the assumption of the correspondence between
the triple algorithm and Partial Reversal). We give a detailed comparison of these
specializations to our results in this section.

Busch, Surapaneni, and Tirthapura analyzed the total number of reversals as a
function of nB, the number of nodes that have no directed path to D in the initial

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 659

graph (called bad nodes). For the pair algorithm, Busch, Surapaneni, and Tirthapura
determined the exact number of reversals performed by any node. They partitioned
the set of initially bad nodes into pair-layers5 and proved that if a node belongs to
the �th pair-layer, then it performs exactly � reversals. Their definition of pair-layer
is such that a node i is in the �th pair-layer if and only if our formula for i’s work
equals �. Thus our results are the same as those in [3, 4] for the work complexity
of Full Reversal. Busch, Surapaneni, and Tirthapura pointed out that in any graph,
there are at most nB pair-layers. Since nB is never more than n, they concluded that
the global work complexity is at most n2. In our approach, an n2 upper bound on the
global work complexity follows from the fact that there are at most n links in a path
from a node to the destination. As in [3, 4], we derive from our formula a particular
family of graphs in which Ω(n2) reversals are done: the graphs are chains of n + 1
nodes in which D is at one end of the chain and all links are directed away from D
(cf. the upper chain of Figure 5.1).

For the triple algorithm, Busch, Surapaneni, and Tirthapura calculated only up-
per and lower bounds on the number of reversals performed by any node. Moreover,
their lower bound is defined only for certain graphs. In more detail, they partitioned
the initially bad nodes into “levels” and showed that the level index of a node is an
upper bound on the number of reversals performed by the node. It can be shown
that for nodes that are initially sinks or sources, their upper bound is at least twice
as large as our exact work expression, and as such is not tight.

For the lower bound, they partitioned the initially bad nodes into triple-layers5

and showed that the number of reversals performed by a node is at least half the index
of the triple-layer to which the node belongs. It can be shown that their lower bound
is at most half as large as our exact work expression for nodes in S� or S�, and is at
most one-fourth as large as that for nodes in D. Not all graphs can be decomposed
into triple-layers, and thus their lower bounds make sense only for nodes in a subset
of all routable acyclic graphs. In contrast, our results give an exact formula for the
work complexity of all nodes in all routable acyclic graphs.

Arguments similar to those just given show that from the analysis by Busch,
Surapaneni, and Tirthapura as well as from ours, one can conclude that the total
number of reversals is O(n2) for both the (appropriately initialized) triple algorithm
and Partial Reversal. Moreover, Corollary 5.1 establishes a formal understanding of
the graphs used by Busch, Surapaneni, and Tirthapura to prove that their bounds
are asymptotically tight. In particular, the worst case graph for the global work
complexity of Partial Reversal given in Figure 7.1 is obtained by maximizing the
number of nodes with two distinct incoming links (denoted by s in Corollary 5.1).
Graphs constructed as the example from Figure 7.1 consisting of n nodes lead to a
global work complexity of Ω(n2).

D

Fig. 7.1. A worst case graph for global work complexity of Partial Reversal.

In summary, our analysis and that of Busch, Surapaneni, and Tirthapura lead to
exact expressions of the work complexity of Full Reversal. While we also obtain an

5In fact, Busch, Surapaneni, and Tirthapura used the same term “layer” for two different notions
in the analysis of the pair and triple algorithms.

660 CHARRON-BOST, GAILLARD, WELCH, AND WIDDER

exact expression of the work complexity of Partial Reversal, the analysis by Busch,
Surapaneni, and Tirthapura provides only an O(n2) upper bound, and a lower bound
for some specific graphs. However, their bounds hold for the “general” triple algo-
rithm with arbitrary initializations of the α values, which captures more than just the
abstract Partial Reversal algorithm. For a different kind of generalization, namely,
LR with initial labelings satisfying (AC), we give exact expressions for the work com-
plexity of every node.

Further, section 6 gives a formal underpinning of the intuition we got from the
examples in Figure 5.1: there are graphs where the work complexity for Full Reversal
is much larger than for Partial Reversal (namely, by a factor n+1

2), while for all graphs,
the work complexity of Partial Reversal is at most equal to twice the work complexity
of Full Reversal. In other words, contrary to Full Reversal, Partial Reversal is never
a disastrous strategy even if not optimum, and so appears as “less risky” than Full
Reversal. Therefore, it may seem as if our results contradict the results by Busch and
Tirthapura who stated in their conclusions [4] that “the Full Reversal algorithm out-
performs the Partial Reversal algorithm in the worst case.” However, they actually
refer to the pair algorithm and the triple algorithm with arbitrary α initializations.
The triple algorithm with arbitrary α initializations does not correspond to Partial
Reversal, but rather to Partial Reversal preceded by a preliminary phase, which may
be quite penalizing since it may incur an additional work complexity of α∗ · n (recall
that α∗ denotes the difference between the minimal and the maximal initial α values).
Hence the pair algorithm outperforms the triple algorithm with arbitrary α initializa-
tions in general, and that explains the discrepancy between the conclusion in [4] and
our conclusion concerning Full Reversal and Partial Reversal.

8. Conclusions. We presented a formal definition of the Full Reversal and Par-
tial Reversal algorithms introduced by Gafni and Bertsekas [10]. This formalization
unifies the two algorithms and consists of a general link reversal algorithm which as-
signs binary labels on the links and decides which links to reverse based on the current
labeling. For our general algorithm, we have established an exact expression of the
work complexity, thus giving the work complexity of both Full Reversal and Partial
Reversal.

Using binary link labels very naturally leads to the use of game theory for ana-
lyzing the impact of the choice of initial labelings. Our main findings are that Full
Reversal is a pure Nash equilibrium but has the worst social cost among all pure
Nash equilibria. In fact, the price of anarchy—determined by the social cost of Full
Reversal— is proportional to the number of nodes in the graph. On the other hand,
although Partial Reversal is not necessarily a pure Nash equilibrium, its social cost
is never more than twice the optimal. Game theory thus provides us with a formal
basis to further compare the work complexity of Full Reversal and Partial Reversal.

Full Reversal and Partial Reversal were originally presented in a way hinting that
superior performance could be obtained from Partial Reversal, and most of the work
based on link reversal routing uses algorithms [21, 15, 9] whose dynamics are similar
to Partial Reversal. However, no rigorous analysis has been yet given to support this
intuition. Our game-theoretic study provides a rigorous basis for comparing Partial
Reversal with Full Reversal and explains why Partial Reversal is actually preferable
to Full Reversal.

Acknowledgments. We thank Matthias Függer for his helpful comments on
the proof of Theorem 3.3. We are also grateful to the anonymous reviewers, whose
constructive comments helped us to improve the presentation of our results.

LINK REVERSAL ROUTING WITH BINARY LINK LABELS 661

REFERENCES

[1] H. Attiya, V. Gramoli, and A. Milani, A provably starvation-free distributed directory pro-
tocol, in Proceedings of the 12th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), Lecture Notes in Comput. Sci. 6366, Springer,
Berlin, 2010, pp. 405–419.

[2] V. C. Barbosa and E. Gafni, Concurrency in heavily loaded neighborhood-constrained sys-
tems, ACM Trans. Program. Lang. Syst., 11 (1989), pp. 562–584.

[3] C. Busch, S. Surapaneni, and S. Tirthapura, Analysis of link reversal routing algorithms
for mobile ad hoc networks, in Proceedings of the 15th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), ACM, New York, 2003, pp. 210–219.

[4] C. Busch and S. Tirthapura, Analysis of link reversal routing algorithms, SIAM J. Comput.,
35 (2005), pp. 305–326.

[5] K. M. Chandy and J. Misra, The drinking philosopher’s problem, ACM Trans. Program.
Lang. Syst., 6 (1984), pp. 632–646.

[6] B. Charron-Bost, Private communication, 2007.
[7] B. Charron-Bost, A. Gaillard, J. L. Welch, and J. Widder, Routing without ordering, in

Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), ACM, New York, 2009, pp. 145–153.

[8] B. Charron-Bost, J. L. Welch, and J. Widder, Link reversal: How to play better to work
less, in Proceedings of the 5th International Workshop on Algorithmic Aspects of Wireless
Sensor Networks (Algosensors), Lecture Notes in Comput. Sci. 5304, Springer, Berlin, 2009,
pp. 88–101.

[9] A. Derhab and N. Badache, A self-stabilizing leader election algorithm in highly dynamic ad
hoc mobile networks, IEEE Trans. Parallel Distrib. Syst., 19 (2008), pp. 926–939.

[10] E. M. Gafni and D. P. Bertsekas, Distributed algorithms for generating loop-free routes in
networks with frequently changing topology, IEEE Trans. Commun., 29 (1981), pp. 11–18.

[11] R. Ingram, P. Shields, J. E. Walter, and J. L. Welch, An asynchronous leader election
algorithm for dynamic networks, in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, IEEE Press, Piscataway, NJ, 2009, pp. 1–12.

[12] Y.-B. Ko and N. H. Vaidya, Geotora: A protocol for geocasting in mobile ad hoc networks,
in Proceedings of the 2000 International Conference on Network Protocols (ICNP), IEEE
Press, Piscataway, NJ, 2000, pp. 240–250.

[13] E. Koutsoupias and C. H. Papadimitriou, Worst-case equilibria, in Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes
in Comput. Sci. 1563, Springer, Berlin, 1999, pp. 404–413.

[14] Y. Malka, S. Moran, and S. Zaks, A lower bound on the period length of a distributed
scheduler, Algorithmica, 10 (1993), pp. 383–398.

[15] N. Malpani, J. L. Welch, and N. Vaidya, Leader election algorithms for mobile ad hoc
networks, in Proceedings of the 4th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communication, ACM, New York, 2000, pp. 96–103.

[16] D. Monderer and L. S. Shapley, Potential games, Games and Economic Behavior, 14 (1996),
pp. 124–143.

[17] M. Naimi, M. Trehel, and A. Arnold, A log(n) distributed mutual exclusion algorithm based
on path reversal, J. Parallel Distrib. Comput., 34 (1996), pp. 1–13.

[18] J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), pp. 286–295.
[19] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, eds., Algorithmic Game The-

ory, Cambridge University Press, New York, 2007.
[20] M. J. Osborne, An Introduction to Game Theory, Oxford University Press, New York, 2003.
[21] V. D. Park and M. S. Corson, A highly adaptive distributed routing algorithm for mobile

wireless networks, in Proceedings of the 16th Conference on Computer Communications
(Infocom), IEEE Press, Piscataway, NJ, 1997, pp. 1405–1413.

[22] T. Radeva and N. A. Lynch, Partial reversal acyclicity, in Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2011,
pp. 353–354.

[23] K. Raymond, A tree-based algorithm for distributed mutual exclusion, ACM Trans. Comput.
Syst., 7 (1989), pp. 61–77.

[24] S. Tirthapura and M. Herlihy, Self-stabilizing distributed queuing, IEEE Trans. Parallel
Distrib. Syst., 17 (2006), pp. 646–655.

[25] J. E. Walter, J. L. Welch, and N. H. Vaidya, A mutual exclusion algorithm for ad hoc
mobile networks, Wireless Networks, 7 (2001), pp. 585–600.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

