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Abstract. In TLA+, a system specification is written as a logical formula
that restricts the system behavior. As a logic, TLA+ does not have assign-
ments and other imperative statements that are used by model checkers
to compute the successor states of a system state. Model checkers com-
pute successors either explicitly — by evaluating program statements —
or symbolically — by translating program statements to an SMT formula
and checking its satisfiability. To efficiently enumerate the successors, TLA’s
model checker TLC introduces side effects. For instance, an equality x ′ = e
is interpreted as an assignment of e to the yet unbound variable x .
Inspired by TLC, we introduce an automatic technique for discovering ex-
pressions in TLA+ formulas such as x ′ = e and x ′ ∈ {e1, . . . , ek} that can
be provably used as assignments. In contrast to TLC, our technique does
not explicitly evaluate expressions, but it reduces the problem of finding
assignments to the satisfiability of an SMT formula. Hence, we give a way
to slice a TLA+ formula in symbolic transitions, which can be used as an
input to a symbolic model checker. Our prototype implementation success-
fully extracts symbolic transitions from a few TLA+ benchmarks.

1 Introduction

TLA is a general language introduced by Leslie Lamport for specifying temporal
behavior of computer systems. It was later extended to TLA+ [18], which provides
the user with a concrete syntax for writing expressions over sets, functions, integers,
sequences, etc. TLA+ does not fix a model of computation, and thus it found appli-
cations in the design of concurrent and distributed systems, e.g., see [12,23,24,22,2].

A specification alone brings almost no guarantees of system correctness. As it
is an untyped language, TLA+ allows for expressions such as 1 ∪ {2}, which are
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module prodcons
variable S , empty
Init

∆
= S = {} ∧ empty = true

Produce
∆
= ∧ empty ′ = false
∧ ∃X ∈ subset {“A”, “B”, “Z”, “1”, “8”} : S ′ = S ∪ {X }

Consume
∆
= ¬empty ∧ S ′ ∈ subset S ∧ empty ′ = (S ′ = {})

Next
∆
= Produce ∨ Consume

Fig. 1: A simple producer-consumer

considered ill-typed in statically-typed programming languages. To formally prove
specification properties such as safety and liveness, one can use TLAPS — a proof
system for TLA+ [8]. Although progress towards proof automation was made in
the last years [20], writing formal proofs is still a challenging task [23,24].

On the other side of the spectrum are model checkers that require little user
effort to run. Indeed, TLA+ users debug their specifications with TLC [26]. Be-
yond simple debugging, TLC found serious bugs in specifications of distributed
algorithms [23]. Although TLC contains remarkable engineering solutions, its core
techniques enumerate reachable states and inevitably suffer from state explosion.

Instead of enumerating states, software model checkers run SAT and SMT
solvers in the background to reason about computations symbolically. To name
a few, CBMC [15] and CPAChecker[3] implement bounded model checking [4] and
CEGAR [9]. Domain-specific tools ByMC and Cubicle prove properties of param-
eterized distributed algorithms with SMT [10,14].

A simple example in Figure 1 illustrates the problems that one faces when
developing a symbolic model checker for TLA+. In this example, we model two
processes: Producer that inserts a subset of {“A”, “B”, “Z ”, “1”, “8”} into the set S ,
and Consumer that removes from S its arbitrary subset. The system is initialized
with the operator Init . A system transition is specified with the operator Next that
is defined via a disjunction of operators Produce and Consume. Both Producer and
Consumer maintain the state invariant empty ⇔ (S = ∅). We notice the following
challenges for a symbolic approach:

1. The specification does not have types. This is not a problem for TLC, since
it constructs states on the fly and hence dynamically computes types. In the
symbolic case, one can use type synthesis [20] or the untyped SMT encoding [21].

2. Direct translation of Next to SMT would produce a monolithic formula, e.g.,
it would not analyze Produce and Consume as independent actions. This is in
sharp contrast to translation of imperative programs, in which variable assign-
ments allow a model checker to focus only on the local state changes.

In this paper, we focus on the second problem. Our motivation comes from the
observation on how TLC computes the successors of a given state [18, Ch. 14].
Instead of precomputing all potential successors — which would be anyway impos-
sible without types — and evaluating Next on them, TLC explores subformulas
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of Next . The essential exploration rules are: (1) Disjunctions and conjunctions are
evaluated from left to right, (2) an equality x ′ = e assigns the value of e to x ′ if
x ′ is yet unbound, (3) if an unbound variable appears on the right-hand side of
an assignment or in a non-assignment expression, TLC terminates with an error,
and (4) operands of a disjunction assign values to the variables independently. In
more detail, rule (4) means that whenever a disjunction A ∨ B is evaluated and x ′

is assigned a value in A, this value does not propagate to B ; moreover, x ′ must be
assigned a value in B .

In our example, TLC evaluates the actions Produce and Consume independently
and assigns variables as prescribed by these formulas. As TLC is explicit, for each
state, it produces at most 22
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successors in Produce as well as in Consume.

We introduce a technique to statically label expressions in a TLA+ formula φ
as assignments to the variables from a set V ′, while fulfilling the following:

1. For purely Boolean formulas, if one transforms φ into an equivalent formula∨
1≤i≤k Di in disjunctive normal form (DNF), then every disjunct Di has exactly

one assignment per variable from V ′.

2. The assignments adhere the following partial order: if x ′ ∈ V ′ is assigned a
value in expression e, that uses a variable y ′ ∈ V ′, then the assignment to y ′

precedes the assignment to x ′.

3. In general, we formalize the above idea with the notion of a branch.

As expected, the following sequence of expressions is given as assignments in
our example: (1) empty ′ = true, (2) S ′ = S ∪ {X }, (3) S ′ ∈ subsetS , and
(4) empty ′ = (S ′ = ∅). Using this sequence, our technique constructs two symbolic
transitions that are equivalent to the actions Produce and Consume.

In general, finding assignments and slicing a formula into symbolic transitions is
not as easy as in our example, because of quantifiers and if-then-else complicating
matters. In this paper, we present our solution, demonstrate its soundness and
report on preliminary experiments.

2 Abstract Syntax α-TLA+

TLA+ has rich syntax [18], which cannot be defined in this paper. To focus only
on the expressions that are essential for finding assignments in a formula, we define
abstract syntax for TLA+ formulas below. In our syntax, the essential operators
such as conjunctions and disjunctions are included explicitly, while the other non-
essential operators are hidden under the star expression ?.

We assume predefined three infinite sets:

– A set L of labels. We use notation `i to refer to its elements, for i ∈ N.

– A set Vars ′ of primed variables that are decorated with prime, e.g., x ′ and a ′.

– A set Bound of bound variables, which are used by quantifiers.
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Next
∆
= `1 ::

(
`2 ::

(
`3 :: empty ′ ∈ `4 :: ? ∧ `5 :: ∃X ∈ `6 :: ? : `7 :: S ′ ∈ `8 :: ?)

∨ `9 :: (`10 :: ? ∧ `11 :: S ′ ∈ `12 :: ? ∧ `13 :: empty ′ ∈ `14 :: ?(S ′)
))

Fig. 2: The Next operator of producer-consumer in α-TLA+

The abstract syntax α-TLA+ is defined in terms of the following grammar:

expr ::= exα | ` :: false

| ` :: v ′ ∈ exα | ` :: expr ∧ · · · ∧ expr | ` :: expr ∨ · · · ∨ expr

| ` :: ∃x ∈ exα : expr | ` :: if exα then expr else expr

exα ::= ` :: ? (v ′, . . . , v ′)

` ::= a unique label from the set L
v ′ ::= a variable name from the set Vars ′

x ::= a variable name from the set Bound

A few comments on the syntax and its relation to TLA+ expressions are in order.
We require every expression to carry a unique label `i ∈ L. Although this is not a
requirement in TLA+, it is easy to decorate every expression with a unique label.
The expressions of the form ` :: v ′ ∈ expr are of ultimate interest to us, as they
are treated as assignment candidates. Under certain conditions, they can be used
to assign to v ′ a value from the set represented by the expression expr . Perhaps
somewhat unexpectedly, expressions such as v ′ = e and unchanged 〈v1, . . . , vk 〉
are not included in our syntax. To keep the syntax minimal, we represent them with
` :: v ′ ∈ expr . Indeed, these expressions can be rewritten in an equivalent form:
v ′ = e as v ′ ∈ {e}, and unchanged 〈v1, . . . , vk 〉 as v ′1 ∈ {v1}∧· · ·∧v ′k ∈ {vk}. Every
non-essential TLA+ expression e is presented in the abstract form ` :: ?(v ′1, . . . , v

′
k ),

where v ′1, . . . , v
′
k are the names of the primed variables that appear in e. When no

primed variable appears in an expression, we omit parenthesis and write ` :: ?.
TLA+ expressions often refer to user-defined operators, which are not present in
our abstract syntax. We simply assume that all non-recursive user-defined operators
have been expanded, that is, recursively replaced with their bodies. All uses of
recursive operators are hidden under ?; hence, recursive operator definitions are
ignored when searching for assignment candidates.

It should be now straightforward to see how one could translate a TLA+ expres-
sion to our abstract syntax. We write α(e) to denote the expression in α-TLA+,
that represents an expression e in the complete TLA+ syntax. With γ we de-
note the reverse translation from α-TLA+ to TLA+ that has the property that
γ(α(e)) = e. Figure 2 shows the abstract expression α(Next) of the operator Next
defined in Figure 1.

Discussions. Notice that α-TLA+ is missing several fundamental constructs per-
mitted in TLA+, such as case expressions, universal quantifiers, and negations.
They are all abstracted to ?. The primary purpose of α-TLA+ is to allow us to
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determine whether a given expression containing set inclusion — or equality — can
be used as an assignment. If such an expression occurs under a universal quantifier,
it is not clear which value should be used for an assignment. Hence, we abstract the
expressions under universal quantifiers. For similar reason, we abstract the expres-
sions under negation. The latter is consistent with TLC, which produces an error
when given, for example, Next == ¬(x ′ = 1). Finally, we abstract case, due to its
semantics, which is defined in terms of the choose operator [18, Ch. 6]. In practice,
there are no potential assignments under case in the standard TLA+ examples.

3 Preliminary Definitions

Every TLA+ specification declares a certain finite set of variables, which may
appear in the formulas contained therein. Let φ be an α-TLA+ expression. We
assume, for the purposes of our analysis, that φ is associated with some finite set
Vars ′(φ), which is a subset of Vars ′, containing all of the variables that appear
in φ (and possibly additional ones). This is the set of variables declared by the
specification in which γ(φ) appears.

Since the labels are unique, we write lab(` :: ψ) to refer to the expression label `
and expr(`) to refer to the expression that is labeled with `. We refer to the set of
all subexpressions of φ by Sub(φ). See [16] for a formal definition.

The set Sub(φ) allows us to reason about terms that appear inside an expres-
sion φ, at some unknown/irrelevant depth. We will often refer to the set of all labels
appearing in φ, that is, Labs(φ) = {lab(ψ) | ψ ∈ Sub(φ)}.

Of special interest to us are assignment candidates, i.e., expressions of the form
` :: v ′ ∈ φ1. Given a variable v ′ ∈ Vars ′(φ) and an α-TLA+ expression φ, we write
cand(v ′, φ) to mean the set of labels that belong to assignment candidates for v ′

in subexpressions of φ. More formally, cand(v ′, φ) is {` | (` :: v ′ ∈ ψ) ∈ Sub(φ)}.
An exhaustive definition is included in [16]. We use the notation cand(φ) to mean⋃

v ′ ∈ Vars′(φ) cand(v ′, φ).

Finally, we assign to each label ` in Labs(φ) a set frozenφ(`) ⊆ Vars ′(φ). Intu-

itively, if a variable v ′ is in frozenφ(`), then no expression of the form ˆ̀ :: v ′ ∈ ψ
can be treated as an assignment inside expr(`). Formally, for every ` ∈ Labs(φ) the
set frozenφ(`) is defined as the minimal set satisfying all the constraints in Table 1.

The sets frozenφ naturally lead to the dependency relations /v ′ on Labs(φ),
where v ′ ∈ Vars ′(φ). We will use `1/v ′ `2 to mean that `1 is an assignment candidate
for v ′, which also belongs to the frozen set of `2. Formally:

`1 /v ′ `2 ⇐⇒ `1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(`2)

Intuitively, if `1 /v ′ `2 we want to make sure that expr(`1) is evaluated before
expr(`2), if possible.

Example 1. Let us look at the following α-TLA+ expression:

`1 :: [∃i ∈ [`2 :: ?(y ′)] : `3 :: x ′ ∈ [`4 :: ?]]
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Table 1: The constraints on frozenφ
α-TLA+ expression φ Constraints on frozenφ

` :: ?(v ′
1, . . . , v

′
k ) {v ′

1, . . . , v
′
k} ⊆ frozenφ(`)

` :: v ′ ∈ φ1 frozenφ(`) = frozenφ(lab(φ1))

` ::
∧s

i=1 φi or ` ::
∨s

i=1 φi frozenφ(`) ⊆ frozenφ(lab(φi)) for i ∈ {1, . . . , s}
` :: ∃x ∈ φ1 : φ2 frozenφ(`) ⊆ frozenφ(lab(φ1)) ⊆ frozenφ(lab(φ2))

` :: if φ1 then φ2 else φ3 frozenφ(`) ⊆ frozenφ(lab(φ1))

frozenφ(lab(φ1)) ⊆ frozenφ(lab(φi)) for i = 2, 3

Take the subexpression `3 :: x ′ ∈ [`4 :: ?], which we name ψ . By solving the
constraints for frozenψ(`3) we conclude that frozenψ(`3) = ∅. However, if we take
the additional constraints for frozenφ(`3) into consideration, the empty set no longer
satisfies all of them, specifically, it does not satisfy the condition imposed by the
existential quantifier in `1. The additional requirement {y ′} ⊆ frozenφ(`3) implies
that frozenφ(`3) = {y ′}. This corresponds to the intuition that expressions under
a quantifier, like ψ, implicitly depend on the bound variable and the expressions
used to define it, which is expr(`2) in our example. /

4 Formalizing Symbolic Assignments

As TLC evaluates formulas in a left-to-right order, there is a very clear notion of
an assignment; the first occurrence of an expression v ′ ∈ S is interpreted as an
assignment to v ′. In our work, we want to statically find expressions that can safely
be used as assignments. If we were only dealing with Boolean formulas, we could
transform the original TLA+ formula to DNF,

∨s
i=1 Di , and treat each Di inde-

pendently. However, we also need to find assignments, which may be nested under
existential quantifiers. To transfer our intuition about DNF to the general case we
first introduce a transformation boolForm, that captures the Boolean structure of
the formula. Then, we introduce branches and assignment strategies to formalize
the notion of assignments in the symbolic case.

Boolean structure of a formula and branches. The transformation boolForm maps
an α-TLA+ expression to a Boolean formula over variables from {b` | ` ∈ L}. The
definition of boolForm can be found in Table 2. As boolForm(φ) is a formula in
Boolean logic, a model of boolForm(φ) is a mapping from {b` | ` ∈ L} to B =
{true, false}. Take S ⊆ L. The set S naturally defines a model induced by S ,
denoted M[S ], by the requirement that M[S ] � b` if and only if ` ∈ S .

The boolForm transformation allows us to formulate the central notion of a
branch: A set Br ⊆ L is called a branch of φ if the following constraints hold:

(a) The set Br induces a model of boolForm(φ), i.e., M[Br ] � boolForm(φ), and
(b) The model M[Br ] is minimal, that is, M[S ] 2 boolForm(φ) for every S ⊂ Br .
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Table 2: The definition of boolForm(φ)

α-TLA+ expression φ boolForm(φ)

` :: false or ` :: ?(v ′
1, . . . , v

′
k ) or ` :: v ′ ∈ φ1 b`

` ::
∧s

i=1 φi

∧s
i=1 boolForm(φi)

` ::
∨s

i=1 φi

∨s
i=1 boolForm(φi)

` :: ∃x ∈ φ1 : φ2 boolForm(φ2)

` :: if φ1 then φ2 else φ3 boolForm(φ2) ∨ boolForm(φ3)

Then, Branches(φ) is the set of all branches of φ.

Example 2. Let us look the α-TLA+ expression φ given by

`1 :: [[`2 :: x ′ ∈ ?] ∧ [`3 :: [[`4 :: x ′ ∈ ?] ∨ [`5 :: x ′ ∈ ?]]]]

We know that boolForm(φ) = b`2 ∧ (b`4 ∨ b`5). The set S = {`2, `4, `5} induces a
model of boolForm(φ), but it is not a branch of φ because M[S ] is not a minimal
model. It is easy to see that φ has two branches Br1 = {`2, `4}, and Br2 = {`2, `5}.
Therefore, we see that Branches(φ) = {Br1,Br2}. /

As our goal is to reason about the side-effects of variable assignments, the re-
mainder of this section looks at how we can achieve this with the help of branches.

Assignment strategies. We want to statically mark some expressions as assignments,
that is, pick a set A ⊆ Labs(φ). Below, we formulate the critical properties we
require from such a set, which we will later call an assignment strategy.

Most obviously, we want to consider only assignment candidates:

Definition 1. A set H ⊆ Labs(φ) is homogeneous if all the labels in H are as-
signment candidates. Formally, H ⊆ cand(φ).

If we choose an arbitrary homogeneous set H , it might lack assignments on some
branches or have multiple assignments to the same variable on others. Formally, we
say that H has a covering index d ∈ N0 if there is a branch Br ∈ Branches(φ) and
a variable v ′ ∈ Vars ′(φ) for which d = |Br ∩ H ∩ cand(v ′, φ)|. Now we define sets,
that cover all branches with assignments:

Definition 2. A homogeneous set C is a covering of φ, if it does not have 0 as a
covering index. It is a minimal covering of φ, if it only has 1 as a covering index.

Consider the TLA+ formula x ′ = y ′ ∧ y ′ = 2x ′. Its corresponding α-TLA+ expres-
sion `0 :: (`1 :: x ′ ∈ `2 :: ? (y ′) ∧ `3 :: y ′ ∈ `4 :: ? (x ′)) has a minimal covering
{`1, `3}. However, there is no way to order the assignments to x ′ and y ′. To detect
such cases, we define acyclic sets:
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Definition 3. A homogeneous set A is acyclic, if there is a strict total order
≺A on A, with the following property: For every variable v ′ ∈ V , every branch
Br ∈ Branches and every pair of labels `i and `j in A ∩ Br the relation `i /v ′ `j
implies `i ≺A `j .

Having defined homogeneous, minimal covering, and acyclic sets, we can formu-
late the notion of an assignment strategy.

Definition 4. Let φ be an α-TLA+ expression. A set A ⊆ L is an assignment
strategy for φ, if it is an acyclic minimal covering.

Static assignment problem. Given an α-TLA+ expression φ, our goal is to find an
assignment strategy, or prove that none exists.

5 Finding Assignment Strategies with SMT

For a given α-TLA+ expression φ, we construct an SMT formula θ(φ), that encodes
the properties of assignment strategies. Technically, θ(φ) is defined as θH (φ) ∧
θC (φ) ∧ θA(φ), and consists of:

1. A Boolean formula θH (φ), that encodes homogeneity.

2. A Boolean formula θC (φ), that encodes the minimal covering property.

3. A formula θA(φ), that encodes acyclicity. This formula requires the theories of
linear integer arithmetic and uninterpreted functions (QF UFLIA).

In the following, Propositions 1, 3, and 4 formally establish the relation between
φ and its three SMT counterparts. Together, the propositions allows us to prove
the following theorem:

Theorem 1. For every α-TLA+ formula φ and A ⊆ Labs(φ), it holds thatM[A] �
θ(φ) if and only if A is an assignment strategy for φ.

5.1 Homogeneous Sets

We introduce a Boolean formula, whose models are exactly those induced by homo-
geneous sets. To this end, take the set of labels corresponding to expressions that
are not assignment candidates, N (φ), given by N (φ) := Labs(φ) \ cand(φ). Then,
we define the following:

θH (φ) :=
∧

` ∈ N (φ)

¬b`

Proposition 1. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) if and only if A is homogeneous.
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Table 3: The definition of δv ′(φ)

α-TLA+ expression φ δv′(φ)

` :: false or ` :: ?(v ′
1, . . . , v

′
k ) false

` :: w ′ ∈ φ1

{
b` ;w ′ = v ′

false ; otherwise

` ::
∧s

i=1 φi

∨s
i=1 δv′(φi)

` ::
∨s

i=1 φi

∧s
i=1 δv′(φi)

` :: ∃x ∈ φ1 : φ2 δv′(φ2)

` :: if φ1 then φ2 else φ3 δv′(φ2) ∧ δv′(φ3)

5.2 Minimal Covering Sets

Next we construct a Boolean formula θ∗C (φ), whose models are exactly those induced
by covering sets. To this end, we define, for each v ′ ∈ Vars ′(φ), the transformation
δv ′ as shown in Table 3. Intuitively, δv ′(φ) is satisfiable exactly when there is an
assignment to v ′ on every branch of φ. We then define

θ∗C (φ) :=
∧

v ′ ∈ Vars′(φ)

δv ′(φ)

Formally, the following proposition holds:

Proposition 2. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) ∧ θ∗C (φ) if and only if A is a covering set for φ.

It is easy to restrict coverings to the minimal coverings. To do this, we define the
set of collocated labels, denoted Colloc(φ), as

Colloc(φ) := {(`1, `2) ∈ L2 | ∃Br ∈ Branches(φ) . {`1, `2} ⊆ Br}

We can use this set to reason about minimal coverings: A minimal covering may
contain, per variable, no more than one label from each pair of collocated assign-
ments to that variable. We describe these labels by using the sets Collocv ′(φ) :=
Colloc(φ) ∩ cand(v ′, φ)2 and

CollocVars′(φ) :=
⋃

v ′ ∈ Vars′(φ)

Collocv ′(φ)

Then, the following SMT formula, in addition to θ∗C (φ), helps us find minimal
covering sets:

θ∃!(φ) :=
∧

(i,j ) ∈ CollocVars′ (φ)
i<j

¬(bi ∧ bj )

We denote by θC (φ) the formula θ∗C (φ) ∧ θ∃!(φ).

Proposition 3. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) ∧ θC (φ) if and only if A is a minimal covering set for φ.
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5.3 Acyclic Assignments

The last step is reasoning about acyclicity. Recall that, for `1, `2 ∈ L, the relation
`1 /v ′ `2 holds if and only if `1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(`2). It is prudent to
see that /v ′ is not, in general, a strict total order (possibly not even irreflexive).
However, the acyclicity property states that we can find a strict total order, which
agrees with all relations /v ′ , on all branches.

Take Colloc/(φ) to be the filtering of Colloc(φ) by the relations /v ′ , i.e. the
set {(i , j ) ∈ Colloc(φ) ∩ cand(φ)2 | ∃v ′ ∈ Vars ′(φ) . i /v ′ j}. The SMT formula
describing acyclicity is as follows:

θ∗A(φ) :=
∧

(i,j ) ∈ Colloc/(φ)

bi ∧ bj ⇒ R(i) < R(j )

where R is an uninterpreted L → N function, capturing assignment order. In prac-
tice, we take L = N. Unlike the previous formulas, θ∗A(φ) extends beyond Boolean
logic, requiring both linear integer arithmetic and uninterpreted functions. Thus, a
model for θ∗A(φ) is a pair (M , r), where M models the Boolean part of the formula,
i.e. assigns truth values to each bi , and r : N→ N is the interpretation of R.

To simplify the analysis, we force R to be injective, when it is restricted to
Labs(φ). Otherwise we could always construct an injective function from R, which
respects the required inequalities. The formula we therefore consider is as follows:

θA(φ) := θ∗A(φ) ∧
∧

`1,`j ∈ Labs(φ)
`i<`j

R(`i) 6= R(`j )

Proposition 4. For every α-TLA+ expression φ and A ⊆ Labs(φ), there is a
function r : N→ N, for which (M[A], r) � θH (φ)∧θA(φ) if and only if A is acyclic.

6 Soundness of our Approach

In this section, we show the relation between assignment strategies and the original
TLA+ formulas. To this end, we introduce the notion of a slice. Together, branches
allow us to rewrite a TLA+ formula into an equivalent disjunction of slices.

In TLA+, there are two kinds of variables: rigid variables that correspond to
the variables declared with constant, and flexible variables whose values change
during the course of an execution. Primed versions of the variables exist only for
flexible variables and are used in transition formulas. Transition formulas in TLA+

are first-order terms and formulas with flexible variables (unprimed and primed
ones). We give the necessary definitions of TLA+ semantics, whereas details can
be found in [19]. An interpretation I defines a universe |I| of values and interprets
each function symbol by a function and each predicate symbol by a relation. A state
s is a mapping from unprimed flexible variables to values, and a state s ′ is a similar
mapping for primed variables. A valuation ξ is a mapping from rigid variables
to values. Given an interpretation I, a pair of states (s, s ′), and a valuation ξ, the

10



semantics of a TLA+ transition formula E is the standard predicate logic semantics
of E with respect to the extended valuation of s, s ′, ξ. With these definitions, M =
(I, ξ, s, s ′) is a model for E , if E is equivalent to true under M . Let φ be a formula
and S ⊆ L. We define φ sliced by S , denoted slice(φ,S ) in Table 4.

Table 4: The definition of slice(φ,S )

α-TLA+ formula φ slice(φ,S)

` :: false ` :: false

` :: ? (v ′
1, . . . , v

′
1) or ` :: v ′ ∈ φ1

{
φ ; ` ∈ S

` :: false ; otherwise

` ::
∧s

i=1 φi ` ::
∧s

i=1 slice(φi ,S)

` ::
∨s

i=1 φi ` ::
∨s

i=1 slice(φi ,S)

` :: ∃x ∈ φ1 : φ2 ` :: ∃x ∈ φ1 : slice(φ2,S)

` :: if φ1 then φ2 else φ3 ` :: if φ1 then slice(φ2,S) else slice(φ3,S)

Below, we show that the branches and slices induced by them naturally decom-
pose a TLA+ formula. Let φ be an α-TLA+ expression and γ (φ) its corresponding
TLA+ formula. Then, the following holds:

Proposition 5. Let φ be an α-TLA+ expression and M = (I, ξ, s, s ′) a model of
the TLA+ formula γ (φ). There exists a branch Br of φ such that M is also a model
of γ (slice(φ,Br)).

Proposition 6. Let φ be an α-TLA+ expression and M = (I, ξ, s, s ′) a model of
the TLA+ formula γ (slice(φ,Br)). Then, M is also a model of γ (φ).

Proposition 7. Let φ be an α-TLA+ expression. For every S ,T ⊆ Labs(φ), every
model M of the TLA+ formula γ (slice(φ,S )), is also a model of γ (slice(φ,S ∪ T )).

It is easy to see that Proposition 7 does not hold in the other direction. For
instance, take the empty set as S and Labs(φ) as T . This implies the following:

γ(slice(φ,S )) = false and slice(φ,S ∪ T ) = φ.

Obviously, false cannot have a model, regardless of whether γ(φ) has one or not.
Since Propositions 5 and 6 hold, it would suffice to consider the set Branches(φ),

together with an assignment strategy, to generate symbolic transitions. However, it
is often the case that, for two distinct branches Br1 and Br2, the same assignments
in A are chosen, that is, the intersections Br1∩A and Br2∩A are the same. We show
that one can reduce the number of considered symbolic transitions, by analyzing
how various branches intersect A.

An assignment strategy A naturally defines an equivalence relation ∼A on
Branches(φ), given by Br1 ∼A Br2 if and only if Br1 ∩ A = Br2 ∩ A. We use
the notation [Br ]A to refer to the equivalence class of Br by ∼A, that is, the set
{X ∈ Branches(φ) | Br ∼A X }.
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Definition 5. Let φ be an α-TLA+ expression, A an assignment strategy for φ and
Br a branch of φ. Using X = [Br ]A and Y =

⋃
Z ∈ X Z , we define the symbolic

transition generated by Br and A to be slice(φ,Y ).

Example 3. Let us look Example 2 again. The formula φ has two assignment strate-
gies A1 = {`2}, and A2 = {`4, `5}. If the first assignment strategy A1 is chosen,
we have that Br1 ∩ A1 = Br2 ∩ A1 = {`2}. This implies that Br1 and Br2 are in
the same equivalence class, or Br1 ∼A1

Br2. Therefore, we have only one symbolic
transition which is exactly φ. However, if A2 is selected, branches Br1 and Br2 are
not equivalent because Br1 ∩ A2 = {`4} and Br2 ∩ A2 = {`5}. Therefore, we have
two symbolic transitions:

T1 = `1 :: [[`2 :: x ′ ∈ ?] ∧ [`3 :: [[`4 :: x ′ ∈ ?] ∨ `5 :: false]]]

T2 = `1 :: [[`2 :: x ′ ∈ ?] ∧ [`3 :: [`4 :: false ∨ [`5 :: x ′ ∈ ?]]]]

The first assignment strategy A1 seems to be better than A2 because A1 generates
fewer symbolic transitions than A2. However, in this paper, we do not introduce any
metric, by which we could compare assignment strategies. In the implementation,
we use any strategy found by the SMT solver. /

The equivalence relation ∼A allows us to define a counterpart to Proposition 7:

Proposition 8. Let φ be an α-TLA+ expression. For any selection Br1, . . . ,Brk
from the branches of φ, the following holds: If there exists a model M of the formula
γ(slice(φ,Br1 ∪ · · · ∪ Brk )), then M must be a model of γ(slice(φ,Br)), for some
branch Br ∈ Branches(φ). Additionally, if there is an assignment strategy A for φ,
such that Br1, . . . ,Brk all belong to the same equivalence class [B ]A, then M must
be a model of γ(slice(φ,Br)), for some branch Br ∈ [B ]A.

The following result allows us to use symbolic transitions, not individual branches:

Theorem 2. Let φ be an α-TLA+ expression and A an assignment strategy for φ.
There is a model M of the TLA+ formula γ(φ) if and only if there exists a
Br ∈ Branches(φ), such that M is a model of γ(ψ), where ψ is the symbolic tran-
sition generated by Br and A.

7 Preliminary Experiments and Potential Applications

Implementation and evaluation. Based on the theory presented in this paper, we
have implemented a procedure to find assignment strategies and their corresponding
symbolic transitions from TLA+ specifications, or report that none exist. It uses
Z3 as the background SMT solver.

We have chose specifications both from publicly available sources, e.g. EWD840
and Paxos from [1], and from a collection of algorithms we have encoded in TLA+

ourselves. For each specification, we focus on the Next formula. We report the num-
ber of subexpressions in α(Next), that is, |Sub(α(Next))|, the number of assign-
ments in the strategy found by our procedure, the number of symbolic transitions

12



Table 5: Experimental results

Specification #subexpressions size of #symbolic time

strategy transitions (ms)

aba [6] 86 48 8 271

nbacg [13] 126 82 13 205

EWD840 [11] 47 16 4 25

prodcons (Fig. 1) 12 4 2 19

Paxos [17] 60 16 4 29

nbac [25] 47 15 14 26

bcastFolklore [7] 41 17 4 28

computed and the total runtime. The results are presented in Table 5. Note that
the results for the specification in Fig. 1 are as expected; all assignment candidates
must be part of the strategy and we find two symbolic transitions corresponding to
Produce and Consume. We also see that the number of symbolic transitions is gen-
erally much smaller than the number of transitions an explicit-state model checker
would find, as even simple specifications, like in Figure 1, would generate numerous
transitions in explicit state model checking, but only two symbolic transitions.

Applications. We illustrate an application of our technique for bounded model
checking [4] by the means of the example in Figure 3. In this example, three pro-
cesses pass a unique token in one direction, with the goal of computing the largest
process identifier.

Our technique extracts three symbolic transitions T1, T2, and T3, each Ti being
equivalent to P(i)∧ id ′ = id for 1 ≤ i ≤ 3. As common in bounded model checking,
with JF Ki,i+1 we denote the SMT encoding of a transition by action F from an ith
to an (i +1)-th state. For instance, JNextK0,1 and JT3K0,1 encode the transitions from
the state 0 to the state 1 by Next and T3. Likewise, JInitK0 encodes SMT constraints
by Init on the initial states. One can use the SMT encodings introduced in [20,21].

module max
extends Naturals
variable tok ,max , id
Init

∆
= tok = 1 ∧ id ∈ [1..3→ Nat ] ∧max = 0

P(i)
∆
= tok = i ∧ tok ′ = 1 + i % 3 ∧max ′ = if id [i ] > max then id [i ] else max

Next
∆
= (P(1) ∨ P(2) ∨ P(3)) ∧ id ′ = id

Fig. 3: A distributed maximum computation in a ring of three processes in TLA+

13



JInitK0 JNextK0,1 JNextK1,2 JNextK2,3 JInitK0

JT1K0,1 JT1K1,2 JT1K2,3
JT2K0,1 JT2K1,2 JT2K2,3
JT3K0,1 JT3K1,2 JT3K2,3

Fig. 4: SMT formulas that are constructed when checking the executions up to
length 4: using the action Next (left), and using symbolic transitions (right). The
gray formulas are excluded from the SMT context during the exploration.

Figure 4 shows the SMT formulas that are constructed by a bounded model
checker when exploring executions up to length 4. (For the sake of space, we omit
the formulas that check property violation.) On one hand, the monolithic encoding
that uses only Next has to keep all the formulas in the SMT context. On the
other hand, by incrementally checking satisfiability of the SMT context, the model
checker can discover that some formulas — for example, JT2K0,1 and JT3K1,2 —
lead to unsatisfiability and prune them from the SMT context. Similar approach
improves efficiency of bounded model checking C programs [5][Ch. 16], hence, we
expect it to be effective for the verification of TLA+ specifications too.

8 Conclusions

We have introduced a technique to compute symbolic transitions of a TLA+ speci-
fication by finding expressions that can be interpreted as assignments. Importantly,
we designed the technique with soundness in mind. Detailed proofs can be found
in the report [16]. We believe that our results can be used as a first preprocessing
step when developing a symbolic model checker or a type checker for TLA+.

As in the case of TLC, one can find TLA+ specifications, for which no as-
signment strategy exists. However, TLA+ users are systematically checking their
specifications with TLC, in order to find simple errors. Hence, most of the bench-
marks already come in a form compatible with TLC. Thus, we expect our approach
to also work in practice. Based on these ideas, we are currently developing a sym-
bolic model checker for TLA+.

Acknowledgments. We are grateful to Stephan Merz for insightful discussions on
semantics of TLA+. We thank anonymous reviewers for their helpful suggestions.
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A Extended Definitions

Table 8 gives us a full formal definition of the function depth which maps an expres-
sion φ in our α-TLA+ abstract syntax to a natural number. Proofs of Propositions 5
and 6 are based on induction on the depth of an expression φ in the α-TLA+ ab-
stract syntax.

Table 6: The definition of Sub(φ)

α-TLA+ expression φ Sub(φ)

` :: false or ` :: ?(v ′
1, . . . , v

′
k ) {φ}

` :: v ′ ∈ φ1 {φ, φ1}
` ::

∧s
i=1 φi or ` ::

∨s
i=1 φi {φ} ∪

⋃s
i=1 Sub(φi)

` :: ∃x ∈ φ1 : φ2 {φ} ∪ Sub(φ1) ∪ Sub(φ2)

` :: if φ1 then φ2 else φ3 {φ} ∪ Sub(φ1) ∪ Sub(φ2) ∪ Sub(φ3)

Table 7: The definition of cand(v ′, φ)

α-TLA+ expression φ cand(v ′, φ)

` :: false or ` :: ?(v ′
1, . . . , v

′
k ) ∅

` :: w ′ ∈ φ1

{
{`} ;w ′ = v ′

∅ ; otherwise

` ::
∧s

i=1 φi or ` ::
∨s

i=1 φi

⋃s
i=1 cand(v ′, φi)

` :: ∃x ∈ φ1 : φ2 cand(v ′, φ2)

` :: if φ1 then φ2 else φ3 cand(v ′, φ2) ∪ cand(v ′, φ3)

B Detailed Proofs

Our propositions require additional lemmas, which we introduce only in the ap-
pendix. Specifically:

- Proposition 2 requires Lemmas 2, 9, 10, 8, 5, 6, and 7.

- Proposition 4 requires Lemma 11.

- Proposition 5 requires Lemmas 5, 4, 3, 6, and 7.

- Proposition 6 requires Lemmas 5, 3, 4, 6, and 7.

- Proposition 8 requires Lemmas 4, 3, 5, 6, and 7, .
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Table 8: The definition of depth

depth (φ) = 0 if φ = ` :: v ′ ∈ exα, or

φ = ` :: false, or

φ = ` :: ?(v ′, . . . , v ′)

depth (φ) = 1 + max (depth (φ1) , depth (φ2)) if φ = ` :: φ1 ∨ φ2, or

φ = ` :: φ1 ∧ φ2

depth (φ) = 1 + depth (φ1) if φ = ` :: ∃x ∈ S . φ1

depth (φ) = 1 + max (depth (φ2) , depth (φ3)) if φ = ` :: IF φ1 THEN φ2

ELSE φ3

B.1 Additional Lemmas

Lemma 1. Let φ be an α-TLA+ expression. For any set A ⊆ L, it holds that

M[A] � boolForm(φ) ⇐⇒ M[A ∩ Labs(φ)] � boolForm(φ)

Proof. We prove this by induction on the structure of φ:

– φ = ` :: false: By definition, boolForm(φ) = b` and Labs(φ) = {`}. It is clear
that ` ∈ A ⇐⇒ ` ∈ A∩{`}. If we look at the definition of the induced model,
we can conclude the following:

M[A] � b` ⇐⇒ ` ∈ A ⇐⇒ ` ∈ A ∩ {`} ⇐⇒ M[A ∩ {`}] � b`

– φ = ` :: ? (v ′1, . . . , v
′
k ): Same as for φ = ` :: false.

– φ = ` :: v ′ ∈ ˆ̀ :: ? (v ′1, . . . , v
′
k ): By definition, Labs(φ) = {`, ˆ̀}. Again,

` ∈ A ⇐⇒ ` ∈ A ∩ Labs(φ), the rest is the same as for φ = ` :: false.
– φ = ` ::

∧s
i=1 φi : Assume as the induction hypothesis, that the lemma holds for

every φi , i ∈ {1, . . . , s}. As boolForm(φ) =
∧s

i=1 boolForm(φi) by definition, we
know that

M[A] � boolForm(φ) ⇐⇒ M[A] � boolForm(φi), for all i ∈ {1, . . . , s}

Take an arbitrary i ∈ {1, . . . , s}. By the induction hypothesis

M[A] � boolForm(φi) ⇐⇒ M[A ∩ Labs(φi)] � boolForm(φi)

By applying the hypothesis again, it is also the case that

M[A∩Labs(φ)] � boolForm(φi) ⇐⇒ M[(A∩Labs(φ))∩Labs(φi)] � boolForm(φi)

Since Labs(φ) ∩ Labs(φi) = Labs(φi) we can conclude that

M[A] � boolForm(φi) ⇐⇒ M[A ∩ Labs(φ)] � boolForm(φi)

Since i is arbitrary, this holds for every φi , so the lemma holds for such φ.
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– φ = ` ::
∨s

i=1 φi : Analogous to the case where φ = ` ::
∧s

i=1 φi .
– φ = ` :: ∃x ∈ ψ : φ0: Assume as the induction hypothesis, that the lemma holds

for φ0. As boolForm(φ) = boolForm(φ0) by definition, we know

M[A] � boolForm(φ) ⇐⇒ M[A] � boolForm(φ0)

⇐⇒ M[A ∩ Labs(φ0)] � boolForm(φ)

and

M[A∩Labs(φ)] � boolForm(φ0) ⇐⇒ M[A∩Labs(φ)∩Labs(φ0)] � boolForm(φ0)

Since Labs(φ0) ⊆ Labs(φ) we know that for any A the sets A ∩ Labs(φ0) and
A ∩ Labs(φ) ∩ Labs(φ0) are the same, thus the lemma holds.

– φ = ` :: if φ1 then φ2 else φ3 : Analogous to the case where φ = ` :: φ2 ∨ φ3
as boolForm(φ) = boolForm(φ2) ∨ boolForm(φ3) and Labs(φ2) ∪ Labs(φ3) ⊆
Labs(φ).

Thus the lemma holds for any α-TLA+ expression φ. ut

Lemma 2. Let φ be an α-TLA+ expression. For any set A ⊆ L and any variable
v ′ ∈ Vars ′(φ), it holds that

M[A] � δv ′(φ) ⇐⇒ M[A ∩ cand(v ′, φ)] � δv ′(φ)

Proof. Analogous to the proof of Lemma 1. ut

Lemma 3. Let φ be an α-TLA+ expression. For any set A ⊆ L, it holds that

slice(φ,A) = slice(φ,A ∩ Labs(φ))

Proof. Analogous to the proof of Lemma 1. ut

Lemma 4. Let φ be an α-TLA+ expression. If φ has the shape φ = ` ::
∧s

i=1 φi
it follows that every branch of φ is a union of branches for each φi and vice-versa.
Formally:

Branches(φ) =

{
s⋃

i=1

Bri | ∀i ∈ {1, . . . , s} . Bri ∈ Branches(φi)

}

Proof. Take an arbitrary Br ∈ Branches(φ). By the definition of a branch,M[Br ] �
boolForm(φ). We define Bri := Br ∩ Labs(φi) for each i = 1, . . . , s. Then, B =⋃s

i=1 Bri by construction, since Labs(φ) =
⋃s

i=1 Labs(φi). Because each subexpres-
sion of φ has a unique label, the sets Labs(φi) are pairwise disjoint. Take an arbi-
trary i ∈ {1, . . . , s}. Since boolForm(φ) implies boolForm(φi), we know M[Br ] �
boolForm(φi). By Lemma 1, it must be the case that M[Bri ] � boolForm(φi) as
well. Now take an arbitrary nonempty T ⊆ Bri . Because Br induces a minimal
model, we knowM[Br \T ] 2 boolForm(φ). If we look at any j 6= i , since Labs(φi)
and Labs(φj ) are disjoint, the set (Br \T )∩Labs(ψj ) is just Br ∩Labs(φj ) = Brj .
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Clearly, M[Br \ T ] � boolForm(φj ), by Lemma 1, for all j 6= i , so the only reason
M[Br \T ] does not model boolForm(φ) is becauseM[Br \T ] 2 boolForm(φi) Since
(Br \T )∩ Labs(φi) is Bri \T , which is a proper subset of Bri for every nonempty
subset T of Bri , we can conclude that M[S ] 2 boolForm(φ) must hold for every
S ⊆ Bri , which proves that Bri is indeed a branch of φi , for every i ∈ {1, . . . , s}.

Alternatively, take arbitrary branches Br1, . . . ,Brs of subexpressions, such that
Br1 ∈ Branches(φ1), . . . ,Brs ∈ Branches(φs). Define Br :=

⋃s
i=1 Bri . We must

show that this Br is a branch of φ. Take an arbitrary i ∈ {1, . . . , s}. By definition,
M[Bri ] � boolForm(φi). Lemma 1 tells us that M[Br ] � boolForm(φi) exactly
when M[Br ∩ Labs(φi)] � boolForm(φi). Because Bri is minimal, it must be the
case that Bri∩Labs(φi) equals Bri . If it were some proper subset, S ⊂ Bri , applying
Lemma 1 to Bri would give us

M[Bri ] � boolForm(φi) ⇐⇒ M[S ] � boolForm(φi)

which contradicts the property that for every T ⊂ Bri we knowM[T ] 2 boolForm(φi).
It remains to be seen that Br ∩ Labs(φi) = Bri . Expanding Br tells us

Br ∩ Labs(φi) =

s⋃
j=1

Brj ∩ Labs(φi)

If i 6= j then, as Brj ⊆ Labs(φj ) and the label sets Labs(φi) and Labs(φj ) are
disjoint, we conclude Labs(φi) ∩ Brj = ∅. So M[Br ] � boolForm(φi). As i was ar-
bitrary, this meansM[Br ] �

∧s
i=1 boolForm(φi). To see that Br induces a minimal

model, take an arbitrary nonempty T ⊆ Br . Then, S := Br \ T is a proper subset
of Br . There must exist an i , for which T ∩ Bri 6= ∅. By Lemma 1, we know that

M[S ] � boolForm(φi) ⇐⇒M[S ∩ Labs(φi)] � boolForm(φi)

⇐⇒M[(Br \ T ) ∩ Labs(φi)] � boolForm(φi)

⇐⇒M[Bri \ T ] � boolForm(φi)

But Bri is a branch and Bri \T is its proper subset, soM[Bri \T ] 2 boolForm(φi)
and consequently, M[S ] 2 boolForm(φ), for any proper subset S ⊂ Br . Therefore,
Br is a branch of φ. ut

Lemma 5. Let φ be an α-TLA+ expression. If φ has the shape φ = ` ::
∨s

i=1 φi
it follows that every branch of φ is a branch of some φi and vice-versa. Formally:

Branches(φ) =

s⋃
i=1

Branches(φi)

Proof. Take an arbitrary i ∈ {1, . . . , s} and Br ∈ Branches(φi). Since M[Br ] �
boolForm(φi) it follows that M[Br ] �

∨s
j=1 boolForm(φj ). To see that Br is min-

imal, take an arbitrary S ⊂ Br . By definition, M[S ] 2 boolForm(φi). To see that
it cannot induce a model for boolForm(φj ), where i 6= j , we note that Labs(φi) ∩
Labs(φj ) = ∅ and, by Lemma 1,

M[S ] � boolForm(φj ) ⇐⇒ M[S ∩ Labs(φj )] � boolForm(φj )
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Since S ⊂ Labs(φi) we know that S ∩ Labs(φj ) = ∅. As no boolForm formula is
a tautology, by construction, it follows that M[∅] cannot model boolForm(φj ) for
j 6= i . So S cannot induce a model for

∨s
j=1 boolForm(φj ) and thus Br is a branch

of φ.
Alternatively, take a Br ∈ Branches(φ). There must exist some i ∈ {1, . . . , s}

for whichM[Br ] � boolForm(φi). We show that Br ∩Labs(φj ) = ∅ for all i 6= j by
contradiction: Assume that for some j 6= i there exists a x ∈ Labs(φj ) ∩ Br . It is
always the case that Labs(φi) and Labs(φj ) are disjoint. If we invoke Lemma 1, we
see that

M[Br ] � boolForm(φi) ⇐⇒ M[Br ∩ Labs(φi)] � boolForm(φi)

Because x belongs to Labs(φj ) it must be the case that Br\{x} also induces a model
for boolForm(φi). But this is a contradiction, since Br is a branch and Br \ {x} is
a proper subset. Consequently, the assumption is false and Br ∩ Labs(φj ) = ∅ for
all i 6= j . It remains to see that no S ⊂ Br can induce a model for boolForm(φi).
Take an arbitrary S ⊂ Br . Since, for i 6= j , Br ∩ Labs(φj ) = ∅ then M[Br ] 2
boolForm(φj ). Because M[S ] 2 boolForm(φ), as Br is a branch, we must conclude
that M[S ] 2 boolForm(φi). But that means Br is a branch of φi . ut

Lemma 6. Let φ be an α-TLA+ expression. If φ has the shape φ = ` :: ∃x ∈ ψ . φ0
it follows that branches of φ are exactly branches of φ0. Formally:

Branches(φ) = Branches(φ0)

Proof. Clearly, as boolForm(φ) = boolForm(φ0) by definition, we know

M[T ] � boolForm(φ) ⇐⇒ M[T ] � boolForm(φ0)

for any T ⊆ L, in particular also for branches. ut

Lemma 7. Let φ be an α-TLA+ expression. If φ = ` :: if φ1 then φ2 else φ3
it follows that every branch of φ is a branch of either φ2 or φ3 and vice-versa.
Formally:

Branches(φ) = Branches(φ2) ∪ Branches(φ3)

Proof. Analogous to the proof of Lemma 5, since boolForm(φ) = boolForm(φ2) ∨
boolForm(φ3). ut

Lemma 8. Let φ = ` ::
∧s

i=1 φi be an α-TLA+ expression and J a set that
intersects every branch of φ. Then, J intersects every branch of some φi non-
trivially as well. Formally, take a set J ⊆ L with the property that

∀Br ∈ Branches(φ) . J ∩ Br 6= ∅

Then, the following holds:

∃k ∈ {1, . . . , s} . ∀Br ∈ Branches(φk ) . J ∩ Br 6= ∅
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Proof. We prove this by contradiction. Assume that for every k ∈ {1, . . . , s} we can
find a Brk ∈ Branches(φk ) for which J ∩ Bk = ∅. If we take Br :=

⋃s
k=1 Brk , we

generate a branch of φ, by Lemma 4. Then, by assumption, J ∩ B 6= ∅. However,
from the way we have defined Br , we see that

J ∩ Br = J ∩
s⋃

k=1

Brk =

s⋃
k=1

(J ∩ Brk ) =

s⋃
k=1

∅ = ∅

From this contradiction, we deduce that the lemma must hold. ut

Lemma 9. Let φ be and α-TLA+ expression. For any v ′ ∈ Vars ′(φ) and S ⊆ L,
it holds that if M[S ] � δv ′(φ) then M[L \ S ] � ¬boolForm(φ).

Proof. We will use induction on the structure of φ:

– φ = ` :: false : Since δv ′(φ) = false the implication is vacuously true as no
model exists.

– φ = ` :: ? (v ′1, . . . , v
′
k ) : Same as for φ = ` :: false.

– φ = ` :: w ′ ∈ ψ : If δv ′(φ) = false the implication is vacuously true, since no
model exists. If δv ′(φ) = b` then ¬ boolForm(φ) = ¬b` and

M[S ] � b` ⇐⇒ ` ∈ S ⇐⇒ ` /∈ L \ S ⇐⇒ M[L \ S ] � ¬b`

Thus, the implication holds.
– φ = ` ::

∧s
i=1 φi : Assume as the induction hypothesis, that the lemma holds

for each φi . LetM[S ] � δv ′(φ). By definition, δv ′(φ) =
∨s

i=1 δv ′(φi), so we know
that there exists a j ∈ {1, . . . , s}, for which M[S ] � δv ′(φj ). By the induction
hypothesis, we then know M[L \ S ] � ¬ boolForm(φj ). Since ¬boolForm(φ) =∨s

i=1 ¬boolForm(φi) it also follows thatM[L\S ] � ¬boolForm(φ), as required.
– φ = ` ::

∨s
i=1 φi : Analogous to the previous case.

– φ = ` :: ∃x ∈ ψ : φ0: Assume the lemma holds for φ0. It is obvious that, since
δv ′(φ) = δv ′(φ0) and boolForm(φ) = boolForm(φ0), the lemma holds for φ as
well.

– φ = ` :: if φ1 then φ2 else φ3 : Analogous to the disjunction case, since
boolForm(φ) = boolForm(φ2 ∨ φ3) and δv ′(φ) = δv ′(φ2 ∨ φ3).

Thus the lemma holds for any α-TLA+ expression φ. ut

Lemma 10. If ψ is a Boolean formula in NNF with only negated atoms ¬b`1 , . . . ,¬b`k
and S ⊆ L is a set for which M[S ] � ψ then M[J ] � ψ, for every J ⊆ S.

Proof. We can prove this by induction on the structure of ψ:

– ψ = ¬b`: By definition,

M[S ] � ¬b` ⇐⇒ ` /∈ S

Since J ⊆ S , we know ` /∈ S implies ` /∈ J . Thus, M[J ] � b`.
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– ψ =
∧s

i=1 ψi : Assume as the induction hypothesis, that the lemma holds for all
ψi . We know

M[S ] � ψ ⇐⇒ M[S ] � ψi , for all i ∈ {1, . . . , s}

IfM[S ] � ψ and J ⊆ S it follows from the induction hypothesis, thatM[J ] � ψi

for all i . So clearly, M[J ] � ψ.
– ψ =

∨s
i=1 ψi : Assume as the induction hypothesis, that the lemma holds for all

ψi . We know

M[S ] � ψ ⇐⇒ M[S ] � ψi , for some i ∈ {1, . . . , s}

IfM[S ] � ψ and J ⊆ S it follows from the induction hypothesis, thatM[J ] � ψi

for some i . So clearly, M[J ] � ψ.

We conclude that the lemma holds for any propositional formula ψ in NNF.

ut

Lemma 11. If < is a strict total order on Y and f : X → Y is injective then ≺
defined by

x1 ≺ x2 ⇐⇒ f (x1) < f (x2)

is a strict total order on X .

Proof. We need to show transitivity, asymmetry, irreflexivity and totality of the
relation ≺.

transitivity:

x1 ≺ x2 ∧ x2 ≺ x3 ⇐⇒ f (x1) < f (x2) ∧ f (x2) < f (x3)

=⇒ f (x1) < f (x3)

⇐⇒ x1 ≺ x3

asymmetry:

x1 ≺ x2 ⇐⇒ f (x1) < f (x2)

=⇒ ¬(f (x2) < f (x1))

⇐⇒ ¬(x2 ≺ x1)

irreflexivity:

∀y ∈ Y . ¬(y < y) =⇒ ∀x ∈ X . ¬(f (x ) < f (x ))

⇐⇒ ∀x ∈ X . ¬(x ≺ x )

totality:
∀y1, y2 ∈ Y . y1 < y2 ∨ y2 < y1 ∨ y1 = y2
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implies

∀x1, x2 ∈ X . f (x1) < f (x2) ∨ f (x2) < f (x1) ∨ f (x1) = f (x2)

which is equivalent to

∀x1, x2 ∈ X . x1 ≺ x2 ∨ x2 ≺ x1 ∨ x1 = x2

for injective f .

Thus ≺ is a strict total order on X ut

B.2 Proofs of Section 5

Proposition 1. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) if and only if A is homogeneous.

Proof. Firstly, assume M[A] � θH (φ). Take an arbitrary ` ∈ N (φ). Then

M[A] � θH (φ)⇒M[A] � ¬b` ⇐⇒ ` /∈ A

So every element of A is in Labs(φ) \ N (φ) = cand(φ), which means A ⊆ cand(φ),
i.e. A is homogeneous.

Secondly, assume some A ⊆ Labs(φ) is homogeneous. Take an arbitrary ` ∈ Labs(φ).
The following must then be true:

` ∈ N (φ)⇒ ` /∈ A ⇐⇒ M[A] 2 b` ⇐⇒ M[A] � ¬b`

So we can conclude that M[A] �
∧
` ∈ N (φ) ¬b`, that is, M[A] � θH (φ). ut

Proposition 2. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) ∧ θ∗C (φ) if and only if A is a covering set for φ.

Proof. Firstly, assumeM[A] � θH (φ)∧ θ∗C (φ). This obviously implies thatM[A] �
θH (φ). By Proposition 1, we know A is homogeneous. We will prove that A is a
covering set by contradiction:

Take an arbitrary branch Br ∈ Branches(φ) and v ′ ∈ Vars ′(φ) and assume that
A ∩ Br ∩ cand(v ′, φ) is empty. Because M[A] � θ∗C (φ) and θ∗C (φ) ⇒ δv ′(φ), by
definition, it must hold that M[A] � δv ′(φ). By Lemma 2, we know it suffices to
consider only the labels from A ∩ cand(v ′, φ), which we denote by A|v ′ , for which
M[A|v ′ ] � δv ′(φ). By Lemma 9, we can deduce that M[L \A|v ′ ] � ¬boolForm(φ).
Since we assumed Br ∩ A|v ′ = ∅, it follows that Br ⊆ L \ A|v ′ . Because of this we
can apply Lemma 10, as ¬boolForm(φ) in NNF contains only negated atoms, to
conclude M[Br ] � ¬boolForm(φ). However, as Br is a branch it must hold that
M[Br ] � boolForm(φ) as well, which is a contradiction.

Therefore, Br ∩ A|v must be nonempty. As both Br and v ′ were arbitrary this
implies that A is a covering set.
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Secondly, consider the opposite direction, where A ⊆ L is a covering set. We
must show thatM[A] � θ∗C (φ), since covering sets are homogeneous, which implies
M[A] � θH (φ) by Proposition 1. It suffices to see that for every v ′ ∈ Vars ′(φ) it
holds that M[A] � δv ′(φ). We prove the following statement by induction on the
structure of φ: For every variable v ′ ∈ Vars ′(φ), equation (1) holds:

(∀Br ∈ Branches(φ) . A ∩ Br ∩ cand(v ′, φ) 6= ∅)⇒M[A] � δv ′(φ) (1)

– φ = ` :: false : Since Branches(φ) = {{`}} and ` /∈ cand(φ), no set can satisfy
the precondition, so the implication vacuously holds.

– φ = ` :: ? (v ′1, . . . , v
′
k ) : Same as above.

– φ = ` :: w ′ ∈ φ1 : We know Branches(φ) = {{`}}. Take an arbitrary v ′ ∈ Vars ′(φ)
and assume the precondition ∀Br ∈ Branches(φ) . A ∩ Br ∩ cand(v ′, φ) 6= ∅.
If v ′ 6= w ′ then the precondition cannot hold, so (1) holds vacuously. Alterna-
tively, if v ′ = w ′, we deduce that A must contain {`}. Since δw ′(φ) = b`, clearly,
M[A] � b`.

– φ = ` ::
∧s

i=1 φi : Assume as the induction hypothesis, that (1) holds for every
φk , k ∈ {1, . . . , s}. Take an arbitrary v ′ ∈ Vars ′(φ) and assume the precondition
that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅
By applying Lemma 8, with J = A ∩ cand(v ′, φ), we can deduce that there is
some k ∈ {1, . . . , s}, for which it holds that

∀Br ∈ Branches(φk ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅

Since any label that is both in Br , a branch of φk , and cand(v ′, φ) is in
cand(v ′, φk ), we see that B ∩A ∩ cand(v ′, φk ) is also nonempty. By the induc-
tion hypothesis for φk , this tells us that M[A] � δv ′(φk ). Since, by definition,
δv ′(φ) =

∨s
i=1 δv ′(φi), it must hold that M[A] � δv ′(φ).

– φ = ` ::
∨s

i=1 φi : Assume as the induction hypothesis, that (1) holds for every
φk , k ∈ {1, . . . , s}. Take an arbitrary v ′ ∈ Vars ′(φ) and assume the precondition
that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅
By applying Lemma 5, we see that Branches(φ) =

⋃s
i=1 Branches(φi). We can

deduce

∀k ∈ {1, . . . , s} . ∀Br ∈ Branches(φk ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅

By the same argument as in the conjunctive case, any label in Br ∩ cand(v ′, φ),
where Br ∈ Branches(φk ), is also in cand(v ′, φk ), so by using the induction
hypothesis, we conclude M [A] � δv ′(φk ) for all k ∈ {1, . . . , s}.
This means M[A] �

∧s
i=1 δv ′(φk ) so as δv ′(φ) =

∧s
i=1 δv ′(φk ) we see that

M[A] � δv ′(φ).
– φ = ` :: ∃x ∈ φ1 : φ2 : Assume as the induction hypothesis, that (1) holds for
φ2. Take an arbitrary v ′ ∈ Vars ′(φ) and assume the precondition that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅
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By applying Lemma 6, we see that Branches(φ) = Branches(φ2), so it is clear
that M[A] � δv ′(φ2) by the induction hypothesis. Since δv ′(φ) = δv ′(φ2) we
know that M[A] � δv ′(φ).

– φ = ` :: if φ1 then φ2 else φ3 : Assume as the induction hypothesis, that
the statement holds for φ2, φ3. Take an arbitrary v ′ ∈ Vars ′(φ) and assume the
precondition that

∀Br ∈ Branches(φ) . Br ∩ [A ∩ cand(v ′, φ)] 6= ∅

By applying Lemma 7, we see that Branches(φ) = Branches(φ2)∪Branches(φ3).
The rest of this proof is the same as for the disjunctive case, since δv ′(φ) =
δv ′(φ2) ∧ δv ′(φ3) and boolForm(φ) = boolForm(φ2) ∨ boolForm(φ3).

So we can conclude, that (1) always holds. Take an arbitrary v ′ ∈ Vars ′(φ). Since
A is a covering set, if also satisfies the precondition of (1). Therefore, we know that
M[A] � δv ′(φ). As v ′ was arbitrary, it must be the case that M[A] � θ∗C (φ). ut

Proposition 3. For every α-TLA+ expression φ and A ⊆ Labs(φ), it holds that
M[A] � θH (φ) ∧ θC (φ) if and only if A is a minimal covering set for φ.

Proof. Firstly, assumeM[A] � θH (φ)∧θC (φ). We already know, from Proposition 2,
that such an A is a covering set, since M[A] � θ∗C (φ) is implied.

Take an arbitrary Br ∈ Branches(φ) and v ′ ∈ Vars ′(φ). We must show that
|A ∩ Br ∩ cand(v ′, φ)| = 1. We know the set is nonempty, so consider an arbitrary
pair i , j ∈ A ∩Br ∩ cand(v ′, φ). Clearly, {i , j} ⊆ Br and {i , j} ⊆ cand(v ′, φ) so we
know (i , j ), (j , i) ∈ Collocv ′(φ). We demonstrate that i = j by contradiction.

Assume that i 6= j and w.l.o.g. i < j . SinceM[A] � θ∃!(φ) and, by assumption,
i < j , we must have a term ¬(bi∧bj ), and can concludeM[A] � ¬bi∨¬bj . However,
this is only true if i /∈ A ∨ j /∈ A. As we have selected i , j such that i , j ∈ A we
have a contradiction. It then follows that i = j and the intersection is a singleton,
as required.

Secondly, assume that a set A is a minimal covering set. In particular, it is also a
covering set and thusM[A] � θH (φ)∧θ∗C (φ), by Proposition 2. To show thatM[A] �
θ∃!(φ), take an arbitrary v ′ ∈ Vars ′(φ) and i < j for which (i , j ) ∈ Collocv ′(φ). We
need to see thatM[A] � ¬(bi ∧bj ). By definition, there exists a Br ∈ Branches(φ),
for which {i , j} ⊆ Br , as Collocv ′(φ) ⊆ Colloc(φ). Since A is a minimal covering set,
we know A∩Br ∩ cand(v ′, φ) is a singleton. Both i and j belong to B ∩ cand(v ′, φ)
and i < j implies that they are distinct, so one of them must not belong to A. This
means M[A] � ¬bi ∨ ¬bj . As this holds for an arbitrary selection of v ′ and (i , j ),
clearly M[A] � θ∃!(φ), which we needed to show. ut

Proposition 4. For every α-TLA+ expression φ and A ⊆ Labs(φ), there is
a function r : N → N, for which (M[A], r) � θH (φ) ∧ θA(φ) if and only if A is
acyclic.

Proof. Firstly, assume that there exists an r : N→ N, for which (M[A], r) � θH (φ)∧
θA(φ). This obviously implies that M[A] � θH (φ). By Proposition 1, we know A is
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homogeneous. We define ≺A using r :

`1 ≺A `2 ⇐⇒ r(`1) < r(`2)

Clearly, < is a strict total order on N. We have ensured that∧
`1,`j ∈ Labs(φ)

`i<`j

r(`i) 6= r(`j )

so r restricted to Labs(φ) is injective. As A ⊆ Labs(φ) we know that r restricted to
A is injective as well. We can then use Lemma 11, for the function f = r |A : A→ N,
to conclude that such a ≺A is a strict total order on A. Now take an arbitrary branch
Br ∈ Branches(φ), two labels `1, `2 ∈ A ∩ Br and a variable v ′ ∈ Vars ′(φ). If the
relation `1 /v ′ `2 does not hold, the implication `1 /v ′ `2 ⇒ `1 ≺A `2 is vacuously
correct. If it does, since `1, `2 belong to A∩Br , we know that (`1, `2) ∈ Colloc/(φ).
As (M[A], r) � θA(φ) it is also the case that (M[A], r) � θ∗A(φ). We know that
M[A] � b`1 ∧ b`2 so it must be the case that r(`1) < r(`2). But then, by definition,
`1 ≺A `2. Because Br , `1, `2 and v ′ were arbitrary, we can conclude that A is acyclic.

Secondly, assume A is acyclic. We must show that M[A] � θ∗A(φ), since acyclic
sets are homogeneous, which implies M[A] � θH (φ) by Proposition 1. We can take
the strict total order ≺A and extend it to a strict total order ≺ on Labs(φ). Because
of this, there exists an ordering function ord: Labs(φ) → {1, . . . , |Labs(φ)|} with
the property

`1 ≺ `2 ⇐⇒ ord(`1) < ord(`2)

we can define r : N→ N as

r(n) =

{
ord(n) ; n ∈ Labs(φ)

1 ; otherwise

Let us first see that (M[A], r) � θ∗A(φ). Take an arbitrary pair (i , j ) ∈ Colloc/(φ).
We need to show that (M[A], r) � bi ∧ bj ⇒ R(i) < R(j ). If i /∈ A or j /∈ A then
bi ∧ bj evaluates to false and the implication in satisfied. If both i and j belong
to A, then we take an arbitrary Br ∈ Branches(φ) containing both of them (it
exists, since (i , j ) ∈ Colloc(φ) as Colloc/(φ) ⊆ Colloc(φ)) and the variable v ′ ∈ V
for which i /v ′ j . As A is acyclic, we can instantiate the acyclicity criterion for our
choice of Br , i , j and v ′ and conclude i ≺A j . Because ≺ extends ≺A it must be
the case that ord(i) < ord(j ) and, because r |Labs(φ) = ord, also r(i) < r(j ). So
(M[A], r) models θ∗A(φ). We conclude the proof by showing that this r also models
the formula ∧

`1,`j ∈ Labs(φ)
`i<`j

R(`i) 6= R(`j )

If `1, `2 ∈ Labs(φ) then r(`1) = ord(`1) and r(`2) = ord(`2). It then follows, as
ord is bijective, that either r(`1) < r(`2) or vice-versa. In any case, r(`1) 6= r(`2).
Altogether, this implies (M[A], r) � θA(φ). ut
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B.3 Proofs of Section 6

Proposition 5. Let φ be an α-TLA+ expression and M = (I, ξ, s, s ′) a model
of the TLA+ formula γ (φ). There exists a branch Br of φ such that M is also a
model of γ (slice(φ,Br)).

Proof. We prove this proposition by induction on depth of an α-TLA+ formula φ.
Base case depth (φ) = 0. We have that boolForm (φ) = b`1 . Therefore there

exists exactly one branch Br0 = {`1} on φ. It implies slice(φ,Br0) = φ. Because M
is a model of γ (φ), we know that M is also a model of γ (slice(φ,Br0)).

Assume that the theorem holds for depth (φ) ≤ k . We will show it for the case
depth (φ) = k + 1. There are four cases:

a) Case φ = ` :: φ1 ∨ φ2.
We know that M � γ(φ1) ∨ γ(φ2). Without lost of generality, assume that
M � γ(φ1). Applying the induction hypothesis, there exists a branch Br1 of
φ1 such that M � γ(slice(φ1,Br1)). By Lemma 5, we know that Br1 is also a
branch of φ. Because γ(slice(φ,Br1)) = γ(slice(φ1,Br1)) ∨ γ(slice(φ2,Br1)), we
have that M � γ (slice(φ,Br1)).

b) Case φ = ` :: φ1 ∧ φ2.
We have boolForm (φ) = boolForm (φ1) ∧ boolForm (φ2) and M � γ (φi) for
every i ∈ {1, 2}. Applying the induction hypothesis to every subformula φi , we
know that there exists a branch Bri for every φi such that M � γ (slice(φi ,Bri)).
Let Br is the union of Br1 and Br2. By Lemma 4, we have that Br is a branch
of φ. By Lemma 3, we have

slice(φ,Br) = slice(φ1,Br) ∧ slice(φ2,Br)

= slice(φ1,Br1 ∪ Br2) ∧ slice(φ2,Br1 ∪ Br2)

= slice(φ1,Br1) ∧ slice(φ2,Br2)

Since M � γ (slice(φi ,Bri)) for every i ∈ {1, 2}, we have that M is a model of
γ (slice(φ,Br)).

c) Case φ = ` :: ∃x ∈ S . φ1.
Notice that if γ (S ) is the empty set, there is no model for γ (φ). Since M is a
model of γ (φ), we know that γ (S ) is not the empty set and therefore, there ex-
ists x0 in S such that M � γ (φ1) [x ← x0]. Because of the induction hypothesis,
we know that there exists a branch Br1 such that M � γ (slice(φ1,Br1)) [x ← x0].
Moreover, by Lemma 6 we have that Br1 is also a branch of φ and there-
fore, slice(φ,Br1) = ∃x ∈ S . slice(φ1,Br1). Because x0 ∈ γ (S ), we have that
M � γ (slice(φ,Br1)).

d) Case φ = ` :: if φ1 then φ2 else φ3.
The are two subcases: M � γ (φ1 ∧ φ2), or M � γ (¬φ1 ∧ φ3). In both cases, the
arguments are similar to the conjunction case.

In conclusion, we have that the theorem is true for all depth (φ), or for all logical
formula φ. ut
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Proposition 6. Let φ be an α-TLA+ expression and M = (I, ξ, s, s ′) a model of
the TLA+ formula γ (slice(φ,Br)). Then, M is also a model of γ (φ).

Proof. We prove this proposition by induction on depth of an α-TLA+ formula φ.
Base case depth (φ) = 0. We have that boolForm (φ) contains only b`1 . Therefore

there exists exactly one branch Br0 = {`1} on φ. It implies slice(φ,Br0) = φ. It
means M is a model of γ (φ).

Assume that the theorem holds for depth (φ) ≤ k . We will show it for the case
depth (φ) = k + 1. There are four cases:

a) Case φ = ` :: φ1∨φ2. We know γ(φ) = γ(φ1)∨γ(φ2). By definition, γ(slice(φ,Br)) =
γ(slice(φ1,Br)) ∨ γ(slice(φ2,Br)) Applying Lemma 5 we know that Br is a
branch of either φ1 or of φ2. Without loss of generality, it is a branch of φ1. Then,
it follows that slice(φ1,Br) = φ1 and γ(slice(φ2,Br)) = false by Lemma 3, as
Labs(φ2) ∩ Br = ∅. Therefore γ(slice(φ,Br)) is equivalent to γ(φ1). As M is a
model of γ(slice(φ,Br)) it is also a model of γ(φ1) and consequently a model
of γ(φ)

b) Case φ = ` :: φ1 ∧ φ2.
We know boolForm (φ) = boolForm (φ1)∧ boolForm (φ2). Since Br is a branch
of φ, by Lemma 4 we have that Bri = {b` | b` ∈ Br ∧ ` ∈ Labs (φi)} is a branch
of φi for every i ∈ {1, 2}. Moreover, by Lemma 4 we know that Br = Br1∪Br2.
By Lemma 3, we have

slice(φ,Br) = slice(φ1,Br) ∧ slice(φ2,Br)

= slice(φ1,Br1) ∧ slice(φ2,Br2)

Since M1 � γ (slice(φ,Br)), we have that M1 � γ (slice(φi ,Bi)) for every i ∈ {1, 2}.
According to the induction hypothesis, we know that M1 is a model of both
γ (φ1) and γ (φ2). It implies M1 is a model of γ (φ).

c) Case φ = ` :: ∃x ∈ S . φ1.
We have that M1 � γ (slice(φ,Br)) or M1 � γ (∃x ∈ S . slice(φ1,Br)). If γ (S )
is the empty set, there is no model for γ (∃x ∈ S . slice(φ1,Br)). Therefore,
γ (S ) is is not the empty set. Let x0 be an arbitrary element in γ (S ) such that
M1 � γ (slice(φ1,Br)) [x ← x0]. Notice that by Lemma 6 we know Br is also a
branch of φ1. Applying the induction hypothesis, we have that M1 is a model
of γ (φ1) [x ← x0]. It implies that M1 is a model of γ (φ2 [x ← x0]). Because x0
is a element of γ (S ), we have that M1 is a model of γ (φ).

d) Case φ = ` :: if φ1 then φ2 else φ3.
The are two subcases: M1 is a model of γ (φ1 ∧ slice(φ2,Br)), or M1 is a model
of γ (¬φ1 ∧ slice(φ3,Br)). By Lemma 7 we have that Br is a branch of φ2 in the
first case and that Br is a branch of φ3 in the second case. From the induction
hypothesis, it is easy to show that M1 is also a model of γ (φ).

In conclusion, we have that the theorem is true for all depth (φ), or for all logical
formula φ. ut

Proposition 7. Let φ be an α-TLA+ expression. For every S ,T ⊆ Labs(φ), every
model M of the TLA+ formula γ (slice(φ,S )), is also a model of γ (slice(φ,S ∪ T )).
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Proof. If γ(S ) is the empty set, then γ(slice(φ,S )) = false. Therefore, there is no
model of γ(slice(φ,S )), and this proposition holds.

If T = ∅, we have that slice(φ,S ∪ T ) = slice(φ,S ). Therefore, M is also a model
of γ(slice(φ,S ∪ T )).

If both S 6= ∅ and T 6= ∅, we prove this proposition by induction on depth of
an α-TLA+ formula φ.

Base case depth (φ) = 0. We have that boolForm (φ) contains only b`1 . There-
fore, we know that S = T = S ∪ T = {b`1}. It implies that M is a model of
γ(slice(φ,S ∪ T )).

Assume that the theorem holds for depth (φ) ≤ k . We will show it for the case
depth (φ) = k + 1. There are four cases:

a) Case φ = ` :: φ1 ∨ φ2.

Because M � γ(slice(φ,S )) and γ(slice(φ,S ))⇔ γ(slice(φ1,S ))∨γ(slice(φ2,S )),
we know that M is a model of either γ(slice(φ1,S )) or γ(slice(φ2,S )). If M is a
model of γ(slice(φ1,S )), by the induction hypothesis we have M is a model of
γ(slice(φ1,S∪T )). If M is a model ofγ(slice(φ2,S )), by the induction hypothesis
we have M is a model of γ(slice(φ2,S ∪ T )). Therefore, we know that M is a
model of γ(slice(φ,S ∪ T )) since

γ(slice(φ,S ∪ T ))⇔ γ(slice(φ1,S ∪ T )) ∨ γ(slice(φ2,S ∪ T ))

b) Case φ = ` :: φ1 ∧ φ2.

Because M � γ(slice(φ,S )) and γ(slice(φ,S ))⇔ γ(slice(φ1,S ))∧γ(slice(φ2,S )),
we know that M is a model of both γ(slice(φ1,S )) and γ(slice(φ2,S )). By the
induction hypothesis, we have that M is a model of both γ(slice(φ1,S ∪T )) and
γ(slice(φ2,S ∪T )). Therefore, we know that M is a model of γ(slice(φ,S ∪T ))
since

γ(slice(φ,S ∪ T ))⇔ γ(slice(φ1,S ∪ T )) ∧ γ(slice(φ2,S ∪ T ))

c) Case φ = ` :: ∃x ∈ φ1 . φ2.

Because slice(φ,S ) = ∃x ∈ φ1 . slice(φ2,S ), we know that if γ(φ1) is the empty
set, there is no model of γ(slice(φ,S )). Let x0 be an element in γ(φ1) such
that M is a model of γ(slice(φ,S )) [x ← x0]. Applying the induction hypothesis,
we have that M � γ(slice(φ,S ∪ T )) [x ← x0]. Because x0 ∈ γ(φ1), we have
M � γ(∃x ∈ φ1 . slice(φ,S ∪ T )).

d) Case φ = ` :: IF φ1 THEN φ2 ELSE φ3.

There are two cases here:

• If M � γ(φ1) ∧ γ(slice(φ2,S )), then by the induction hypothesis, we have
that M � γ(φ1)∧γ(slice(φ2,S∪T )). Therefore, we have M � slice(φ,S∪T ).

• If M � γ(¬φ1) ∧ γ(slice(φ3,S )), then by the induction hypothesis, we have
M � γ(¬φ1) ∧ γ(slice(φ3,S ∪ T )). Therefore, we have M � slice(φ,S ∪ T ).

In conclusion, we have that the theorem is true for all depth (φ), or for all logical
formula φ. ut
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Proposition 8. Let φ be an α-TLA+ expression. For any selection Br1, . . . ,Brk
from the branches of φ, the following holds: If there exists a model M of the formula
γ(slice(φ,Br1 ∪ · · · ∪ Brk )), then M must be a model of γ(slice(φ,Br)), for some
branch Br ∈ Branches(φ). Additionally, if there is an assignment strategy A for φ,
such that Br1, . . . ,Brk all belong to the same equivalence class [B ]A, then M must
be a model of γ(slice(φ,Br)), for some branch Br ∈ [B ]A.

Proof. Denote by S the union Br1 ∪ · · · ∪ Brk . We prove the lemma by induction
on the structure of φ:

– φ = ` :: false: Since, for any T ⊆ Labs(φ) the formula γ(slice(φ,T )) is
equivalent to false, it does not have a model, so the implication vacuously
holds.

– φ = ` :: ? (v ′1, . . . , v
′
k ): Assume there exists a model M of γ(slice(φ,S )). This

means that ` must belong to S , otherwise slice(φ,S ) is ` :: false and γ applied
to ` :: false is false, which does not have a model. As φ has exactly one
branch, the rest of the lemma follows trivially, since S ⊇ Br1. Consequently,
slice(φ,Br1), φ and slice(φ,S ) are all the same expression, by Lemma 3. As M
is a model of γ(slice(φ,S )) it is also a model of slice(φ,Br1). It is clear that if
all chosen branches belong to [B ]A, then, in particular, Br1 ∈ [B ]A.

– φ = ` :: w ′ ∈ φ1 : Same as the previous case.
– φ = ` ::

∧s
i=1 φi : Assume, as the induction hypothesis, that the lemma holds

for all φi . By definition, slice(φ,S ) = ` ::
∧s

i=1 slice(φi ,S ). Assume, that M
is a model of γ(slice(φ,S )). Then, γ(slice(φ,S )) =

∧s
i=1 γ(slice(φi ,S )) and M

is a model of γ(slice(φi ,S )) for every i . By Lemma 4, we know that for each
i = 1, . . . , k there exist branches Br1

i , . . . ,Br s
i of φ1, . . . , φs , such that

Bri =

s⋃
j=1

Br j
i

Take an arbitrary i ∈ {1, . . . , s}. By Lemma 3, we know that

slice(φi ,S ) = slice(φi ,S ∩ Labs(φi))

We can see the following:

S ∩ Labs(φi) =

(
k⋃

t=1

Brt

)
∩ Labs(φi)

=

(
k⋃

t=1

s⋃
j=1

Br j
t

)
∩ Labs(φi)

=

k⋃
t=1

s⋃
j=1

(
Br j

t ∩ Labs(φi)
)
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As each Br j
t is a branch of φj , all of the intersections are either Br j

t , if i = j ,
or empty. Consequently:

S ∩ Labs(φi) =

k⋃
t=1

Br i
t

By design, Br i
t is a branch of φi , for each t . This means we can apply our in-

duction hypothesis for φi to deduce that there must exist a B i ∈ Branches(φi),
for which M is a model of γ(slice(φi ,B

i)). As i was arbitrary, this holds
for every selection of i . We thus obtain a collection of branches, B1, . . . ,B s ,
where it holds that M is a model of γ(slice(φi ,B

i)) for every i ∈ {1, . . . , s}.
Using B0 =

⋃s
i=1 B i and Proposition 7, we deduce that M is a model of

γ(slice(φi ,B0)), for each i ∈ {1, . . . , s}. By Lemma 4, B0 is a branch of φ.
So it follows that M is a model of γ(slice(φ,B0)).
Assume additionally that Br1, . . . ,Brk ∈ [B ] for some assignment strategy A
and some equivalence class [B ] of ∼A.
By definition, Bri ∩ A = Br1 ∩ A for all i ∈ {1, . . . , k}. It follows, that (Bri ∩
Labs(φj ))∩A = (Br1∩Labs(φj ))∩A for all i ∈ {1, . . . , k} and all j ∈ {1, . . . s}.
This means that the sets Br i

1, . . . ,Br i
k are equivalent for all i ∈ {1, . . . , s}, since

Brj ∩ Labs(φi) = Br i
j . By the induction hypothesis, this implies that B i is

equivalent to Br i
1, for all i ∈ {1, . . . , s}. Altogether:

B0 ∩A =

s⋃
i=1

(B i ∩A)

=

(
s⋃

i=1

Br i
1 ∩A

)

=

(
s⋃

i=1

Br i
1

)
∩A

=Br1 ∩A

Thus we see that B0 is equivalent to Br1 and, by transitivity, to all of the
branches Br1, . . . ,Brk .

– φ = ` ::
∨s

i=1 φi : Assume, as the induction hypothesis, that the lemma holds
for all φi . By definition, slice(φ,S ) = ` ::

∨s
i=1 slice(φi ,S ). Then, γ(slice(φ,S )) =∨s

i=1 γ(slice(φi ,S )). If we assume that M is a model of γ(slice(φ,S )), there must
exist an i ∈ {1, . . . , k}, for which M is a model of γ(slice(φi ,S )) By Lemma 3,
we know that

slice(φi ,S ) = slice(φi ,S ∩ Labs(φi))

Additionally, Lemma 5 guarantees that for each j = 1, . . . , k the set Brj ∩
Labs(φi) is either Brj or empty. Because γ(slice(φi ,S ∩Labs(φi))) has a model,
the set S∩Labs(φi) is not empty. It is therefore a union of branches Br ′1, . . . ,Br ′l
from Branches(φi).
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By the induction hypothesis for φi , we know that there exists a B i ∈ Branches(φi),
for which M is a model of γ(slice(φi ,B

i)). By Lemma 5, B i is also a branch
for φ.
Assume additionally that Br1, . . . ,Brk ∈ [B ]A for some assignment strategy A
and some equivalence class [B ]A of ∼A. Trivially, all branches Br ′1, . . . ,Br ′l are
equivalent as well. Therefore, B i ∼A Br ′1. As Br ′1 is equal to one of the branches
Br1, . . . ,Brk , which are all equivalent, we see that B i is equivalent to Br1 and,
by transitivity, to all of the branches Br1, . . . ,Brk .

– φ = ` :: ∃x ∈ φ1 : φ2 : Assume, as the induction hypothesis, that the lemma
holds for φ2. By definition, slice(φ,S ) = ` :: ∃x ∈ φ1 : slice(φ2,S ). Assume,
that M is a model of γ(slice(φ,S )). Then,

γ(slice(φ,S )) = ` :: ∃x ∈ γ(φ1) : γ(slice(φ2,S ))

It follows that γ(φ1) is contains some x0, for which M is a model of the for-
mula γ(slice(φ2,S ))[x ← x0]. By Lemma 6, we know that branches of φ are
exactly branches of φ2, so each Bri is a branch of φ2. By the induction hy-
pothesis, this means that there exists a B ∈ Branches(φ2), for which M is a
model of γ(slice(φ2,B))[x ← x0]. But this means that M is also a model of
∃x ∈ γ(φ1) : γ(slice(φ2,B)), since x0 was chosen from γ(φ1). Therefore it fol-
lows that M is a model for γ(slice(φ,B)). Note that B is a branch of φ by
Lemma 6.
Assume additionally that Br1, . . . ,Brk ∈ [B ]A for some assignment strategy
A and some equivalence class [B ]A of ∼A. As all branches Br1, . . . ,Brl are
branches of φ2, the induction hypothesis guarantees that B is equivalent to Br1
and, by transitivity, to all of the branches Br1, . . . ,Brk .

– φ = ` :: if φ1 then φ2 else φ3 : Assume, as the induction hypothesis, that
the lemma holds for φ2 and φ3. By definition,

slice(φ,S ) = ` :: if φ1 then slice(φ2,S ) else slice(φ3,S )

Assume, that M is a model of γ(slice(φ,S )). Then,

γ(slice(φ,S )) = if γ(φ1) then γ(slice(φ2,S )) else γ(slice(φ3,S ))

By Lemma 3, we know that

γ(slice(φ,S )) = if γ(φ1) then γ(slice(φ2,S∩Labs(φ2))) else γ(slice(φ3,S∩Labs(φ3)))

By Lemma 7, branches of φ are either branches of φ2 or of φ3. We have two
options, either γ(φ1) is true under M , or it isn’t. If γ(φ1) is true under M ,
then, as M is a model of γ(slice(φ,S )), we can conclude that M is a model of
γ(slice(φ2,S ∩Labs(φ2))) and S ∩Labs(φ2) is not empty. It is therefore a union
of branches Br ′1, . . . ,Br ′l from Branches(φ2). By the induction hypothesis for
φ2, we know that there exists a B2 ∈ Branches(φ2), for which M is a model of
γ(slice(φ2,B

2)). By Lemma 7, B2 is also a branch for φ.
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Assume additionally that Br1, . . . ,Brk ∈ [B ]A for some assignment strategy A
and some equivalence class [B ]A of ∼A. Trivially, all branches Br ′1, . . . ,Br ′l are
equivalent as well. Therefore, B2 ∼A Br ′1. As Br ′1 is equal to one of the branches
Br1, . . . ,Brk , which are all equivalent, we see that B2 is equivalent to Br1 and,
by transitivity, to all of the branches Br1, . . . ,Brk .
The case where γ(φ1) is false under M is proven analogously.

We conclude, that the lemma holds for all φ. ut

Corollary 1. Let φ be an α-TLA+ expression and A an assignment strategy for
φ. For every equivalence class [Br ]A of ∼A, the following holds: Using the set X =⋃

Y ∈ [Br ]A
Y , if there exists a model M of γ(slice(φ,X )), then M must be a model

of γ(slice(φ,B)), for some branch B ∈ [Br ]A.

B.4 Proofs of Theorems

Theorem 1. For every α-TLA+ formula φ and A ⊆ Labs(φ), it holds thatM[A] �
θ(φ) if and only if A is an assignment strategy for φ.

Proof. Let φ be an α-TLA+ formula and A ⊆ Labs(φ). By definition, θ(φ) =
θH (φ) ∧ θC (φ) ∧ θA(φ).

Firstly, assume M[A] � θ(φ). As θ(φ) implies both θH (φ) ∧ θC (φ) and θH (φ) ∧
θA(φ), we know A is a minimal covering and acyclic, by propositions 3 and 4
respectively. By definition, this means A is an assignment strategy.

Secondly, assume A is an assignment strategy. In particular, A a minimal cov-
ering, so M[A] � θH (φ) ∧ θC (φ). Similarly, as A is acyclic, we know that M[A] �
θH (φ) ∧ θA(φ). It therefore follows that M[A] � θH (φ) ∧ θC (φ) ∧ θA(φ), that is,
M[A] � θ(φ). ut

Theorem 2. Let φ be an α-TLA+ expression and A an assignment strategy
for φ. There is a model M of the TLA+ formula γ(φ) if and only if there exists
a Br ∈ Branches(φ), such that M is a model of γ(ψ), where ψ is the symbolic
transition generated by Br and A.

Proof. First, assume that there exists a model M of γ(φ). By Proposition 5, we
know that there exists a branch Br , for which M is a model of γ(slice(φ,Br)).
Then, denote by Y the set

⋃
Z ∈ [Br ]A

Z . Obviously, Br ∈ [Br ]A, so Br ∪ Y = Y .

It follows, by Proposition 7, that M is a model of γ(slice(φ,Y )). But slice(φ,Y ) is
the symbolic transition generated by Br and A, by definition, so the implication
holds.

Next, assume that there exists a model M of γ(ψ), for a symbolic transition ψ.
There exists an equivalence class [Br ]A, such that ψ has the shape slice(φ,Y ) for
Y =

⋃
B ∈ [Br ]A

B By Corollary 1 of Proposition 8, we know that there exists a

branch B ∈ [Br ]A, for which M is a model of γ(slice(φ,B)). ut
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