
Parameterized Model Checking by

Network Invariants: the Asynchronous Case
Igor V. Konnov∗, konnov@forsyte.tuwien.ac.at

Institute of Information Systems,

Vienna University of Technology, Vienna, 1040, Austria

1 Introduction

Notwithstanding the significant progress of model checking techniques, the interesting problem
of checking a specification ϕ against a parameterized family F of finite-state models {Mn} is
still a challenge. Although for certain kind of systems parameterized model checking is of no
practical interest, some systems can be scaled up to unboudedly many communicating processes.
It is often the case that one checks an instance Mk of F and then informally reasons that the
results hold true for any model Mi of F . This intuition sometimes can be supported formally
(cf. [EN95]), giving a rigorous argument.

It is well-known that the parameterized model checking problem is undecidable in gen-
eral [AK86], even in the case of rings, communication graphs of which can seem to be sim-
ple [EN95]. Nevertheless, sometimes the problem can be solved for certain classes of param-
eterized families, or by providing a sound but incomplete procedure. In order to verify an
infinite family F one has to capture it by a finite description, for instance, by describing a
regular structure of inter-process communication.

The framework of network invariants is an example of such approach [WL90, SG90, MG91,
CGJ95, CGJ97]; for further references, see [KZ10]. To apply it one describes the family F
in terms of a network grammar G and then tries to detect invariant models among instances
of this family. In this paper we extend the framework for the case when processes respect
the asynchronous (interleaving) semantics and communicate by synchronous message passing
(rendezvous). This work has been reported previously in [ZK07, Kon10a, KZ10, Kon10b].

2 Network Invariants

Here we give a brief description of network grammars and the framework. One describes a few
process prototypes P1, . . . , Pk as finite state labelled transition systems (LTSs) and defines rules
of their parallel composition ‖. For instance, one may use synchronous composition, where all
processes have to make a step together at the same time. In this case processes communicate
by means of synchronized actions, i.e., a process can take a step labelled with an action a if
there is another process taking a step at the same time labelled with a co-action a. Remaining
processes have to make a silent step τ .

The constraints on communication networks of processes are defined in terms of a context-
free network grammar G = (T ,N ,P,S). The process prototypes T = {P1, . . . , Pk} play role
of terminals, basic building blocks with action labels yet to be bound, whereas non-terminals
from N present larger clusters of processes with all their action labels bound except for few
interface actions. The exact way actions of terminals and of non-terminals are bound is defined

∗Supported in part by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Sci-
ence Fund (FWF), by the Vienna Science and Technology Fund (WWTF) grant PROSEED, and by INTAS
Project (2006-2009) 05-1000008-8144.

Network Invariants: the Asynchronous Case Konnov

in production rules P. Therefore, each non-terminal N ∈ N produces a (possibly infinite)
language L(N) of communication networks that generate LTSs by applying the definition of
a parallel composition w.r.t. bound actions. We say that such an LTS M belongs to L(N)
in this case. The language L(G) of the grammar G is defined as L(S). The instances of a
parameterized family F are generated by L(G). Network grammars allow one to generate
useful parameterized families, where process communication networks form directed acyclic
graphs, for instance: lines, rings, and trees.

Suppose, one introduces an equivalence relation or a preorder � on LTSs such that for
any formula ϕ from a class Φ the conditions M1 � M2 and M2 |= ϕ imply M1 |= ϕ (the
relation ≺ is called conservative). Assume even further, that � is monotonic: M1 � M2 and
M ′1 �M ′2 implies M1 ‖M ′1 �M2 ‖M ′2. For example, simulation and bisimulation satisfy these
requirements for formulas from ACTL* and CTL* respectively.

The inductive structure of systems defined by network grammars gives a natural way to
finding invariants of the family F . For every non-terminal N ∈ N one has to reveal a LTS
Inv(N) such that M � Inv(N) for any M ∈ L(N), i.e., every LTS generated from N is
simulated by Inv(N), an invariant of N . The latter property can be guaranteed by checking if
M � Inv(N) for any M obtained by a production rule N → N1 ‖ · · · ‖ Nm ‖ Pj(1) ‖ · · · ‖ Pj(k),
where each non-terminal Ni is replaced by its invariant Inv(Ni). Moreover, one can try to
detect an invariant of N ∈ N among small communication graphs derived from N .

While the authors of [WL90] introduced basic network invariants for ring networks and asyn-
chronous parallel composition w.r.t. trace inclusion, in [SG90, MG91, CGJ95, CGJ97] general
frameworks for network grammars and synchronous composition are given. Furthermore, in
the latter the global properties of systems, sometimes called multi-index, are considered, for
instance, mutual exclusion. Thus, the invariant detection condition is given with respect to a
specification-based abstraction h, i.e., h(M) � h(Inv(N)).

3 Asynchronous Case

In our work [ZK07, Kon10a, KZ10] we extend the framework to the case when a system is
constructed as a set of processes respecting interleaving semantics and communicating by pair-
wise synchronized actions. We are interested in checking properties of certain fixed processes
in any instance M of the family L(G), i.e., in checking single-index properties.

The crucial point in this setting is that usually strong simulation and strong bisimulation do
not help to detect an invariant. The intuition for this is simple: For example, in the synchronous
case P ‖ P � P may co-exist with P ‖ P ‖ P � P , whereas in the asynchronous setting it is not
usually the case. This is due to the step-to-step correspondence in simulation (bisimulation),
i.e., for H to be a strong simulation relation (M � M ′) one requires that (s1, t1) ∈ H iff for

any s2 : s1
a−→ s2 there is t1 : t1

a−→ t2 such that (s2, t2) ∈ H; plus, the observed propositions
coincide L(s1) ∩ AP0 = L(t1) ∩ AP0. Under interleaving semantics P ‖ P ‖ P has longer path
fragments that can not be matched by shorter path fragments of P ‖ P .

To this end we tried to use block simulation, a non-symmetric version of block bisimulation
introduced in [EN95]. Unlike strong simulation it requires that any finite path s1

τ−→ · · · τ−→
sk

a−→ sk+1 is matched by a finite path t1
τ−→ · · · τ−→ tm

a−→ tm+1 such that (sk+1, tm+1) ∈ H
and (si, tj) ∈ H for any 1 ≤ i ≤ k, 1 ≤ j ≤ m. Furthermore, any infinite path s1

τ−→ · · · τ−→
sk

τ−→ · · · must be matched by an infinite path t1
τ−→ · · · τ−→ tm

τ−→ · · · such that (si, tj) ∈ H
for any i ≥ 1, j ≥ 1. Block simulation appeared to be conservative w.r.t. ACTL*-X. However, it
is not monotonic and thus it can not be used in the framework of network invariants.

2

Network Invariants: the Asynchronous Case Konnov

In order to apply block simulation in the framework we generalized it to quasi-block sim-
ulation, that is both monotonic and conservative w.r.t. ACTL*-X. In quasi-block simulation
matching paths can be split further into equal number of partitions that should relate to each
other (see [KZ10] for the exact definition). This allows one to construct new quasi-block sim-
ulation when additional processes are added and thus monotonicity is preserved. Quasi-block
simulation seems to be hard for computation. Thus, it is used to prove the soundness of the
framework while block simulation could be still applied for invariant detection. In particular,
from M1 �b M2 if follows that M1 ‖ P �qb M2 ‖ P .

Finally, we found another kind of simulation that co-exists with block simulation, i.e. M1 �b
M2 iff M1 �sb M2. As it closely resembles relation between van Glabbeek’s semi-branching
bisimulation and branching simulation, we call it semi-block simulation. To ensure that H
is semi-block simulation one has to ensure that any finite path s1

τ−→ · · · τ−→ sk
a−→ sk+1

is matched by a finite path t1
τ−→ · · · τ−→ tm

a−→ tm+1 such that (sk+1, tm+1) ∈ H and

(s1, tn) ∈ H if n > 1. Furthermore, any infinite path s1
τ−→ · · · τ−→ sk

τ−→ · · · must be

matched by an infinite path t1
τ−→ · · · τ−→ tm

τ−→ · · · such that (s1, t`) ∈ H for some ` ≥ 1.
Thus, one can check much simpler conditions on paths when constructing simulation.

4 Implementation

The framework is implemented as a toolset CheAPS [Kon10b]. Each model Mn from a family
F is composed of a fixed number of control processes and of n processes from a fixed set of
prototypes. Given a network grammar G and finite-state process prototypes CheAPS generates
finite-state models Mn of n processes and checks if one of such models can be used as an
invariant of the family. As soon as invariants of all non-terminals are detected, Inv(S) (and
probably a few smaller LTSs) is checked by Spin against a specification ϕ. If Spin completes
the verification successfully, then all the models of F satisfy ϕ.

CheAPS is designed to use existing non-parameterized models as a source of the param-
eterized family description. When one has a debugged model of a fixed number of processes,
it should be considerably easy to create a parameterized version of it. Therefore, we chose the
following approach. The process prototypes are described in a subset of Promela. The com-
munication structure of the models from F is described by means of a network grammar G. The
terminals of G stand for process prototypes whereas non-terminals of G are used to generate
subnets. The rules of this grammar are annotated with channel bindings to provide a cor-
rect connection of prototype processes to the network. CheAPS includes the gen-net-model

tool to automatically generate Promela code of models Mn from a network grammar G and
prototype descriptions.

The core component of CheAPS is the simba tool intended for checking block simulation
between finite-state models. For each non-terminal N of the grammar G, the tools sequentially
generate LTSs induced by N . For two LTSs induced by N simba constructs an initial semi-
block simulation. In the simple case if a larger model is proved to be simulated by a smaller
one, then the smaller one is declared to be an invariant Inv(N) of N . In a general case several
models induced by N should be simulated by an invariant model Inv(N). The models vary by
application of different grammar rules to N in the last steps. The goal is to find a model that
simulates all the models derived from N .

As state-spaces in model checking grow rapidly with increase of the number of communi-
cating processes simba has several state storage implementations and search strategies. State
storage implementations are as follows: std, dfa, dfafile. The first one is a standard C++

3

Network Invariants: the Asynchronous Case Konnov

implementation of a set, which works well only on relatively small state spaces. The second
one uses the representation of state set by a minimized DFA, which is implemented in Spin.
The last one is a mixed representation by a minimized DFA and a sequential file. While DFA
is utilized to check set membership, a file keeps “unstable” states, which should be explored on
the next iteration. Thus, dfafile keeps the balance between memory consumption and perfor-
mance. Along with forward search strategy simba provides forward-then-back search strategy,
which propagates negative results.

If simba cannot find an invariant for “reasonably” large LTSs induced from N one may apply
the failpath tool. This tool selects the paths of the LTSs to give an insight on the difference
in their behaviour. This tool may be helpful in understanding why such an invariant can not
be found easily, though it is not guaranteed to find a good representative counter-example.

The tool has been successfully applied to several examples: Chandy-Lamport snapshot
algorithm (line topology), Awerbuch distributed depth-first search algorithm (tree topology),
and the model of RSVP protocol (ring topology), where invariants were detected successfully
by our tools. The project homepage is http://lvk.cs.msu.su/~konnov/cheaps/.

References

[AK86] K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 15:307–309, 1986.

[CGJ95] E. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstraction
and regular languages. In Insup Lee and Scott Smolka, editors, CONCUR ’95: Concurrency
Theory, volume 962 of Lecture Notes in Computer Science, pages 395–407. Springer Berlin /
Heidelberg, 1995.

[CGJ97] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks. ACM Trans.
Program. Lang. Syst., 19(5):726–750, September 1997.

[EN95] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’95, pages 85–94, New York, NY, USA, 1995. ACM.

[Kon10a] I. V. Konnov. On application of weaker simulations to parameterized model checking by
network invariants technique. Automatic Control and Computer Sciences, 44(7):378–386,
2010.

[Kon10b] Igor V. Konnov. CheAPS: a checker of asynchronous parameterized systems. In Third
International Workshop on Invariant Generation (WING 2010), 2010.

[KZ10] Igor V. Konnov and Vladimir A. Zakharov. An invariant-based approach to the verification
of asynchronous parameterized networks, 2010.

[MG91] R. Marelly and O. Grumberg. Gormel — grammar oriented model checker. Technical Report
697, The Technion, Haifa, Israel, 1991.

[SG90] Ze’ev Shtadler and Orna Grumberg. Network grammars, communication behaviors and
automatic verification. In Joseph Sifakis, editor, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages 151–165. Springer
Berlin / Heidelberg, 1990.

[WL90] Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets of processes with
network invariants. In Joseph Sifakis, editor, Automatic Verification Methods for Finite State
Systems, volume 407 of Lecture Notes in Computer Science, pages 68–80. Springer Berlin /
Heidelberg, 1990.

[ZK07] Vladimir Zakharov and Igor Konnov. An invariant-based approach to the verification of
asynchronous parameterized networks. In International Workshop on Invariant Generation
(WING’07), pages 41–55, 2007.

4

	Introduction
	Network Invariants
	Asynchronous Case
	Implementation

