A Concurrency Problem with **Exponential DPLL**(\mathcal{T}) **Proofs** Liana Hadarean¹ Alex Horn¹ Tim King² ¹University of Oxford ²Verimag June 5, 2015 #### **Outline** **SAT/SMT-based Verification Techniques for Concurrency** $\mathsf{DPLL}(\mathcal{T})$ Lower Bound Proof Complexity Theorem A Concurrency Problem with O(N!)-sized DPLL(\mathcal{T}) Proofs Two State-of-the-art Partial-Order Encodings **Experiments** **Concluding Remarks** #### **SAT/SMT-based Verification Techniques** SAT/SMT solvers are highly optimized decision procedures: Using these, state-of-the-art symbolic bounded model checker such as CBMC can find concurrency bugs in Apache, and ... and ... #### The Problem Can we pinpoint the challenges (if any) symbolic partial-order encodings of concurrency pose for SAT/SMT solvers? If yes, what insights can we gain? #### SMT Solvers built on DPLL(\mathcal{T}) The SMT solvers in our experiments are built on the DPLL(\mathcal{T}) framework. A simplified form of DPLL(\mathcal{T}) with only two rules: - Propositional resolution (Res); - Learning T-valid clauses over the literals of a fixed alphabet of T-atoms (T-LEARN). The SMT solvers in our experiments are built on the DPLL(\mathcal{T}) framework. A simplified form of DPLL(\mathcal{T}) with only two rules: - Propositional resolution (Res); - Learning \mathcal{T} -valid clauses over the literals of a fixed alphabet of \mathcal{T} -atoms (\mathcal{T} -LEARN). Example: $(x < y \lor x = y) \land y < x$ where $x, y \in \mathbb{Z}$. This formula is \mathcal{T} -unsatisfiable where \mathcal{T} is QF_LIA. Example: $(x < y \lor x = y) \land y < x$ Example: $$(x < y \lor x = y) \land y < x$$ $$\sim \underbrace{\left(\begin{array}{c} A \\ \top \end{array}\right)}_{\mathsf{T}} \vee \underbrace{\begin{array}{c} B \\ \bot \end{array}\right)}_{\mathsf{T}} \wedge \underbrace{\begin{array}{c} C \\ \top \end{array}}_{\mathsf{T}}$$ (SAT: Yes) () () Example: $$(x < y \lor x = y) \land y < x$$ Example: $$(x < y \lor x = y) \land y < x$$ $$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$ $$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$ $$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$ $$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$ $$\phi \diamond \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$ - Note that ϕ_{\diamondsuit} is unsatisfiable because $a_i = a_{i+1}$ for all $1 \le i \le 8$. - But DPLL(T) cannot learn these equalities and enumerates 2⁸ theory conflicts instead, the infamous diamonds problem.¹ ¹Bjørner, N., Dutertre, B., de Moura, L.: *Accelerating Lemma Learning using Joins - DPLL(Join)*. In: LPAR (2008) #### **Contributions** - A general framework for establishing lower bounds on the number of T-conflicts in the fixed-alphabet DPLL(T) calculus; - Proof of factorial lower bound proof complexity for two state-of-the-art symbolic partial-order encodings of a simple, yet challenging concurrency problem; - Experiments that confirm our theoretical lower bound. ## $\mathsf{DPLL}(\mathcal{T})$ Lower Bound Proof Complexity Informally, non-interfering set of critical assignments are propositionally satisfying assignments that contain minimal, disjoint \mathcal{T} -conflicts. #### **Theorem** Let ϕ be an unsatisfiable \mathcal{T} -formula, and Q be a non-interfering set of critical assignments for ϕ . Every Fixed-Alphabet-DPLL(\mathcal{T}) proof that ϕ is UNSAT contains at least |Q| applications of \mathcal{T} -LEARN. This theorem is a theoretical tool for proving lower bound proof complexity results in the $\mathsf{DPLL}(\mathcal{T})$ framework (as exhibited next). #### **The Concurrency Problem** The value at memory location x is initialized to zero, i.e. [x] = 0. | Thread T_0 | Thread T_1 | Thread T_N | | |--------------|--|---|---------| | | local $v_1 := [x]$ $[x] := v_1 + 1$ | | _
[] | | Thread T_0 | Thread T_1 | Thread T_N | | | | r ₁
W ₁ | $\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$ | _ | For N = 2, if restricted to $T_1 \parallel T_2$, we get the following interleavings: (1) $$r_1; w_1; r_2; w_2$$ (2) $r_1; r_2; w_1; w_2$ (3) $r_1; r_2; w_2; w_1$ (4) $$r_2; r_1; w_1; w_2$$ (5) $r_2; r_1; w_2; w_1$ (6) $r_2; w_2; r_1; w_1$. In general, we get $(2N + 1)! \div 2^N$ interleavings for $T_0 \parallel T_1 \parallel \ldots \parallel T_N$. #### **Concurrency Problem Encoding** We define the following preserved-program order (PPO) for the problem challenge $T_0 \parallel T_1 \parallel ... \parallel T_N$: Let $R \triangleq \{r_0, \ldots, r_N\}$ and $W \triangleq \{w_{init}, w_0, \ldots, w_N\}$. Our partial-order encodings are parameterized by three theories: - \mathcal{T}_C : clock constraints, e.g. $c_r < c_w$ for $r \in R$ and $w \in W$, - \mathcal{T}_S : selection constraints, e.g. $s_r = s_w$ for $r \in R$ and $w \in W$, - \mathcal{T}_V : read constraints, e.g. rv_r is a unique \mathcal{T}_V -variable for $r \in \mathbb{R}$. #### **Cubic-size Encoding of Concurrency Problem** Let ϕ^3 be the $O(N^3)$ partial-order encoding of $T_0 \parallel T_1 \parallel \ldots \parallel T_N$: $$C_{W_{init}} < C_{r_{assert}} \land \bigwedge_{i=1...N} C_{W_{init}} < C_{r_{i}} < C_{W_{i}} \land \bigwedge_{W_{i},W' \in W,W \neq W'} (C_{W} < C_{W'} \lor C_{W'} < C_{W}) \land S_{W} \neq S_{W'} \land W_{i} W_{i$$ # Factorial Lower Bound DPLL(\mathcal{T}) Proof Complexity #### **Theorem (Lower Bound for Cubic Partial-Order Encoding)** All Fixed-Alphabet-DPLL(\mathcal{T}) proofs for the problem challenge encoded with ϕ^3 contain at least N! applications of \mathcal{T} -LEARN. We also have a quadratic-size partial-order encoding.² This asymptotically smaller encoding has also at least factorial-sized $DPLL(\mathcal{T})$ proofs for our challenge problem! ²Horn and Kroening. On Partial Order Semantics for SAT/SMT-based Symbolic Encodings of Weak Memory Concurrency. In: FORTE'15. ## **Experiments with Two Partial-Order Encodings** \mathcal{E}^3 and \mathcal{E}^2 are partial-order encodings of asymptotically different size, parameterized by three theories \mathcal{T}_C , \mathcal{T}_S and \mathcal{T}_V . We instantiate $\langle \mathcal{T}_C, \mathcal{T}_S, \mathcal{T}_V \rangle$ to four configurations: - 1. "real-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{R}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$ - 2. "bv-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$ - 3. "real-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_\mathbb{R}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$ - 4. "bv-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$ We use the following SMT solvers: Boolector, CVC4, Yices2, Z3. Example: "z3-bv-clk-int-val- \mathcal{E}^2 " denotes experiments with the $O(N^2)$ encoding using Z3 where $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$. We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour. #### **Experimental Results** Factorial growth of conflicts in fkp2013-unsat benchmark. #### **Concluding Remarks** - We have studied a simple, yet challenging concurrency problem. - Our experiments provide an important diagnostic practice in the development of SMT encodings. - The proofs we have manually inspected in CVC4 pinpoint value constraints as culprits. - This way, our experiments can guide research into improving the performance of SMT solvers on such benchmarks. The results of our work will shortly be published in SMT'15. #### **Concluding Remarks** - We have studied a simple, yet challenging concurrency problem. - Our experiments provide an important diagnostic practice in the development of SMT encodings. - The proofs we have manually inspected in CVC4 pinpoint value constraints as culprits. - This way, our experiments can guide research into improving the performance of SMT solvers on such benchmarks. The results of our work will shortly be published in SMT'15. Thank you! #### SC-relaxed Consistency Encoding Let *E* be the set of events, \ll be the PPO, $val : E \rightarrow \mathcal{T}_V$ -terms, $guard : E \rightarrow \mathcal{T}_V$ -formulas and *L* be the set of memory locations. $$\begin{split} & \text{PPO} \triangleq \bigwedge \left\{ (guard(e) \land guard(e')) \Rightarrow (c_e < c_{e'}) \mid e, e' \in E : e \ll e' \right\} \\ & \text{WW}[x] \triangleq \bigwedge \left\{ (c_w < c_{w'} \lor c_{w'} < c_w) \land s_w \neq s_{w'} \mid w, w' \in W_x \land w \neq w' \right\} \\ & \text{RW}[x] \triangleq \bigwedge \left\{ (c_w < c_r \lor c_r < c_w \mid w \in W_x \land r \in R_x \right\} \\ & \text{RF}_{\text{TO}}[x] \triangleq \bigwedge \left\{ (guard(r)) \Rightarrow \bigvee \left\{ s_w = s_r \mid w \in W_x \right\} \mid r \in R_x \right\} \\ & \text{RF}^3[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (guard(w) \land val(w) = rv_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \text{FR}[x] \triangleq \bigwedge \left\{ (s_w = s_r \land c_w < c_{w'} \land guard(w')) \Rightarrow (c_r < c_{w'}) \mid w, w' \in W_x \land r \in R_x \right\} \\ & \mathcal{E}^3 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^3[x] \land \text{FR}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \\ & \text{RF}^2[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (c_w = sup_r \land guard(w) \land val(w) = rv_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \mathcal{E}^2 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^2[x] \land \text{SUP}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \end{split}$$