A Concurrency Problem with **Exponential DPLL**(\mathcal{T}) **Proofs**

Liana Hadarean¹ Alex Horn¹ Tim King²

¹University of Oxford

²Verimag

June 5, 2015

Outline

SAT/SMT-based Verification Techniques for Concurrency

 $\mathsf{DPLL}(\mathcal{T})$ Lower Bound Proof Complexity Theorem

A Concurrency Problem with O(N!)-sized DPLL(\mathcal{T}) Proofs Two State-of-the-art Partial-Order Encodings

Experiments

Concluding Remarks

SAT/SMT-based Verification Techniques

SAT/SMT solvers are highly optimized decision procedures:

Using these, state-of-the-art symbolic bounded model checker such as CBMC can find concurrency bugs in Apache, and ... and ...

The Problem

Can we pinpoint the challenges (if any) symbolic partial-order encodings of concurrency pose for SAT/SMT solvers?

If yes, what insights can we gain?

SMT Solvers built on DPLL(\mathcal{T})

The SMT solvers in our experiments are built on the DPLL(\mathcal{T}) framework. A simplified form of DPLL(\mathcal{T}) with only two rules:

- Propositional resolution (Res);
- Learning T-valid clauses over the literals of a fixed alphabet of T-atoms (T-LEARN).

The SMT solvers in our experiments are built on the DPLL(\mathcal{T}) framework. A simplified form of DPLL(\mathcal{T}) with only two rules:

- Propositional resolution (Res);
- Learning \mathcal{T} -valid clauses over the literals of a fixed alphabet of \mathcal{T} -atoms (\mathcal{T} -LEARN).

Example: $(x < y \lor x = y) \land y < x$ where $x, y \in \mathbb{Z}$. This formula is \mathcal{T} -unsatisfiable where \mathcal{T} is QF_LIA.

Example: $(x < y \lor x = y) \land y < x$

Example:
$$(x < y \lor x = y) \land y < x$$

$$\sim \underbrace{\left(\begin{array}{c} A \\ \top \end{array}\right)}_{\mathsf{T}} \vee \underbrace{\begin{array}{c} B \\ \bot \end{array}\right)}_{\mathsf{T}} \wedge \underbrace{\begin{array}{c} C \\ \top \end{array}}_{\mathsf{T}}$$

(SAT: Yes)

()

()

Example:
$$(x < y \lor x = y) \land y < x$$

Example:
$$(x < y \lor x = y) \land y < x$$

$$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$

$$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$

$$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$

$$\phi \diamondsuit \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$

$$\phi \diamond \triangleq a_1 \neq a_9 \land \bigwedge_{i=1}^8 (a_i = b_i \land b_i = a_{i+1}) \lor (a_i = c_i \land c_i = a_{i+1})$$

- Note that ϕ_{\diamondsuit} is unsatisfiable because $a_i = a_{i+1}$ for all $1 \le i \le 8$.
- But DPLL(T) cannot learn these equalities and enumerates 2⁸ theory conflicts instead, the infamous diamonds problem.¹

¹Bjørner, N., Dutertre, B., de Moura, L.: *Accelerating Lemma Learning using Joins - DPLL(Join)*. In: LPAR (2008)

Contributions

- A general framework for establishing lower bounds on the number of T-conflicts in the fixed-alphabet DPLL(T) calculus;
- Proof of factorial lower bound proof complexity for two state-of-the-art symbolic partial-order encodings of a simple, yet challenging concurrency problem;
- Experiments that confirm our theoretical lower bound.

$\mathsf{DPLL}(\mathcal{T})$ Lower Bound Proof Complexity

Informally, non-interfering set of critical assignments are propositionally satisfying assignments that contain minimal, disjoint \mathcal{T} -conflicts.

Theorem

Let ϕ be an unsatisfiable \mathcal{T} -formula, and Q be a non-interfering set of critical assignments for ϕ . Every Fixed-Alphabet-DPLL(\mathcal{T}) proof that ϕ is UNSAT contains at least |Q| applications of \mathcal{T} -LEARN.

This theorem is a theoretical tool for proving lower bound proof complexity results in the $\mathsf{DPLL}(\mathcal{T})$ framework (as exhibited next).

The Concurrency Problem

The value at memory location x is initialized to zero, i.e. [x] = 0.

Thread T_0	Thread T_1	Thread T_N	
	local $v_1 := [x]$ $[x] := v_1 + 1$		_ []
Thread T_0	Thread T_1	Thread T_N	
	r ₁ W ₁	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	_

For N = 2, if restricted to $T_1 \parallel T_2$, we get the following interleavings:

(1)
$$r_1; w_1; r_2; w_2$$
 (2) $r_1; r_2; w_1; w_2$ (3) $r_1; r_2; w_2; w_1$

(4)
$$r_2; r_1; w_1; w_2$$
 (5) $r_2; r_1; w_2; w_1$ (6) $r_2; w_2; r_1; w_1$.

In general, we get $(2N + 1)! \div 2^N$ interleavings for $T_0 \parallel T_1 \parallel \ldots \parallel T_N$.

Concurrency Problem Encoding

We define the following preserved-program order (PPO) for the problem challenge $T_0 \parallel T_1 \parallel ... \parallel T_N$:

Let $R \triangleq \{r_0, \ldots, r_N\}$ and $W \triangleq \{w_{init}, w_0, \ldots, w_N\}$.

Our partial-order encodings are parameterized by three theories:

- \mathcal{T}_C : clock constraints, e.g. $c_r < c_w$ for $r \in R$ and $w \in W$,
- \mathcal{T}_S : selection constraints, e.g. $s_r = s_w$ for $r \in R$ and $w \in W$,
- \mathcal{T}_V : read constraints, e.g. rv_r is a unique \mathcal{T}_V -variable for $r \in \mathbb{R}$.

Cubic-size Encoding of Concurrency Problem

Let ϕ^3 be the $O(N^3)$ partial-order encoding of $T_0 \parallel T_1 \parallel \ldots \parallel T_N$:

$$C_{W_{init}} < C_{r_{assert}} \land \bigwedge_{i=1...N} C_{W_{init}} < C_{r_{i}} < C_{W_{i}} \land \bigwedge_{W_{i},W' \in W,W \neq W'} (C_{W} < C_{W'} \lor C_{W'} < C_{W}) \land S_{W} \neq S_{W'} \land W_{i} \land W_{i$$

Factorial Lower Bound DPLL(\mathcal{T}) Proof Complexity

Theorem (Lower Bound for Cubic Partial-Order Encoding)

All Fixed-Alphabet-DPLL(\mathcal{T}) proofs for the problem challenge encoded with ϕ^3 contain at least N! applications of \mathcal{T} -LEARN.

We also have a quadratic-size partial-order encoding.²

This asymptotically smaller encoding has also at least factorial-sized $DPLL(\mathcal{T})$ proofs for our challenge problem!

²Horn and Kroening. On Partial Order Semantics for SAT/SMT-based Symbolic Encodings of Weak Memory Concurrency. In: FORTE'15.

Experiments with Two Partial-Order Encodings

 \mathcal{E}^3 and \mathcal{E}^2 are partial-order encodings of asymptotically different size, parameterized by three theories \mathcal{T}_C , \mathcal{T}_S and \mathcal{T}_V .

We instantiate $\langle \mathcal{T}_C, \mathcal{T}_S, \mathcal{T}_V \rangle$ to four configurations:

- 1. "real-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{R}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$
- 2. "bv-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$
- 3. "real-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_\mathbb{R}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$
- 4. "bv-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$

We use the following SMT solvers: Boolector, CVC4, Yices2, Z3.

Example: "z3-bv-clk-int-val- \mathcal{E}^2 " denotes experiments with the $O(N^2)$ encoding using Z3 where $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$. We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour.

Experimental Results

Factorial growth of conflicts in fkp2013-unsat benchmark.

Concluding Remarks

- We have studied a simple, yet challenging concurrency problem.
- Our experiments provide an important diagnostic practice in the development of SMT encodings.
- The proofs we have manually inspected in CVC4 pinpoint value constraints as culprits.
- This way, our experiments can guide research into improving the performance of SMT solvers on such benchmarks.

The results of our work will shortly be published in SMT'15.

Concluding Remarks

- We have studied a simple, yet challenging concurrency problem.
- Our experiments provide an important diagnostic practice in the development of SMT encodings.
- The proofs we have manually inspected in CVC4 pinpoint value constraints as culprits.
- This way, our experiments can guide research into improving the performance of SMT solvers on such benchmarks.

The results of our work will shortly be published in SMT'15.

Thank you!

SC-relaxed Consistency Encoding

Let *E* be the set of events, \ll be the PPO, $val : E \rightarrow \mathcal{T}_V$ -terms, $guard : E \rightarrow \mathcal{T}_V$ -formulas and *L* be the set of memory locations.

$$\begin{split} & \text{PPO} \triangleq \bigwedge \left\{ (guard(e) \land guard(e')) \Rightarrow (c_e < c_{e'}) \mid e, e' \in E : e \ll e' \right\} \\ & \text{WW}[x] \triangleq \bigwedge \left\{ (c_w < c_{w'} \lor c_{w'} < c_w) \land s_w \neq s_{w'} \mid w, w' \in W_x \land w \neq w' \right\} \\ & \text{RW}[x] \triangleq \bigwedge \left\{ (c_w < c_r \lor c_r < c_w \mid w \in W_x \land r \in R_x \right\} \\ & \text{RF}_{\text{TO}}[x] \triangleq \bigwedge \left\{ (guard(r)) \Rightarrow \bigvee \left\{ s_w = s_r \mid w \in W_x \right\} \mid r \in R_x \right\} \\ & \text{RF}^3[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (guard(w) \land val(w) = rv_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \text{FR}[x] \triangleq \bigwedge \left\{ (s_w = s_r \land c_w < c_{w'} \land guard(w')) \Rightarrow (c_r < c_{w'}) \mid w, w' \in W_x \land r \in R_x \right\} \\ & \mathcal{E}^3 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^3[x] \land \text{FR}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \\ & \text{RF}^2[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (c_w = sup_r \land guard(w) \land val(w) = rv_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \mathcal{E}^2 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^2[x] \land \text{SUP}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \end{split}$$