
A Concurrency Problem with
Exponential DPLL(T ) Proofs

Liana Hadarean1 Alex Horn1 Tim King2

1University of Oxford

2Verimag

June 5, 2015



Outline

SAT/SMT-based Verification Techniques for Concurrency

DPLL(T ) Lower Bound Proof Complexity Theorem

A Concurrency Problem with O(N!)-sized DPLL(T ) Proofs
Two State-of-the-art Partial-Order Encodings

Experiments

Concluding Remarks

2 / 27



SAT/SMT-based Verification Techniques
SAT/SMT solvers are highly optimized decision procedures:

SAT
φ // 2

55

))
UNSAT

Using these, state-of-the-art symbolic bounded model checker
such as CBMC can find concurrency bugs in , and .

/* insertion sort ascending order */!
 !
#include <stdio.h>!
 !
thread() {!
  int n, array[1000], c, d, t;!
  printf("Enter %d integers\n", n);!
  for (c = 0; c < n; c++) {!
    scanf("%d", &array[c]);!
  }!
  for (c = 1 ; c <= n - 1; c++) {!
    d = c;!
    while ( d > 0 && array[d] < array[d-1]) {!
      t          = array[d];!
      array[d]   = array[d-1];!
      array[d-1] = t;!
      d--;!
    }!
  }!
}!
thread() { printf(”Hi there!\n”); }!
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The Problem
Can we pinpoint the challenges (if any) symbolic partial-order
encodings of concurrency pose for SAT/SMT solvers?

If yes, what insights can we gain?
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SMT Solvers built on DPLL(T )
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Fixed-Alphabet DPLL(T ) Proofs
The SMT solvers in our experiments are built on the DPLL(T )
framework. A simplified form of DPLL(T ) with only two rules:
• Propositional resolution (Res);
• Learning T -valid clauses over the literals of a fixed alphabet of
T -atoms (T -learn).

Example: (x < y ∨ x = y) ∧ y < x where x , y ∈ Z. This formula is
T -unsatisfiable where T is QF LIA.
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Fixed-Alphabet DPLL(T ) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y ) ∧

C︷︸︸︷
y < x
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Fixed-Alphabet DPLL(T ) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y ) ∧

C︷︸︸︷
y < x

; ( A︸︷︷︸
>

∨ B︸︷︷︸
⊥

) ∧ C︸︷︷︸
>

(SAT: Yes)

; (A ∨ B) ∧ C ∧ (¬A ∨ ¬C) (T -learn)
; ( A︸︷︷︸

⊥

∨ B︸︷︷︸
>

) ∧ C︸︷︷︸
>

∧( ¬A︸︷︷︸
>

∨ ¬C︸︷︷︸
⊥

) (SAT: Yes)

; (A ∨ B) ∧ C ∧ (¬A ∨ ¬C) ∧ (¬B ∨ ¬C) (T -learn)
; ⊥ (Res)
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Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8
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Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9
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• Note that φ3 is unsatisfiable because ai = ai+1 for all 1 ≤ i ≤ 8.
• But DPLL(T ) cannot learn these equalities and enumerates 28

theory conflicts instead, the infamous diamonds problem.1

1Bjørner, N., Dutertre, B., de Moura, L.: Accelerating Lemma Learning using
Joins - DPLL(Join). In: LPAR (2008)
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Contributions

• A general framework for establishing lower bounds on the
number of T -conflicts in the fixed-alphabet DPLL(T ) calculus;

• Proof of factorial lower bound proof complexity for two
state-of-the-art symbolic partial-order encodings of a simple,
yet challenging concurrency problem;

• Experiments that confirm our theoretical lower bound.
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DPLL(T ) Lower Bound Proof Complexity
Informally, non-interfering set of critical assignments are
propositionally satisfying assignments that contain minimal,
disjoint T -conflicts.

Theorem
Let φ be an unsatisfiable T -formula, and Q be a non-interfering
set of critical assignments for φ. Every Fixed-Alphabet-DPLL (T )
proof that φ is UNSAT contains at least |Q | applications of T -learn.

This theorem is a theoretical tool for proving lower bound proof
complexity results in the DPLL(T ) framework (as exhibited next).
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The Concurrency Problem
The value at memory location x is initialized to zero, i.e. [x] = 0.

Thread T0 Thread T1 Thread TN

local v0 := [x] local v1 := [x]
. . .

local vN := [x]
assert(v0 ≤ N) [x] := v1 + 1 [x] := vN + 1

Thread T0 Thread T1 Thread TN

r0 r1 . . .
rN

w1 wN

For N = 2, if restricted to T1 ‖ T2, we get the following interleavings:

(1) r1; w1; r2; w2 (2) r1; r2; w1; w2 (3) r1; r2; w2; w1
(4) r2; r1; w1; w2 (5) r2; r1; w2; w1 (6) r2; w2; r1; w1.

In general, we get (2N + 1)! ÷ 2N interleavings for T0 ‖ T1 ‖ . . . ‖ TN.
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Concurrency Problem Encoding
We define the following preserved-program order (PPO) for the
problem challenge T0 ‖ T1 ‖ . . . ‖ TN: winit

}} �� ((r0 r1

��

. . . rN

��
w1 . . . wN

Let R , {r0, . . . , rN} and W , {winit ,w0, . . . ,wN}.

Our partial-order encodings are parameterized by three theories:
• TC : clock constraints, e.g. cr ≺ cw for r ∈ R and w ∈W,
• TS : selection constraints, e.g. sr = sw for r ∈ R and w ∈W,
• TV : read constraints, e.g. rvr is a unique TV -variable for r ∈ R.
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Cubic-size Encoding of Concurrency Problem
Let φ3 be the O(N3) partial-order encoding of T0 ‖ T1 ‖ . . . ‖ TN:

cwinit ≺ crassert ∧

∧
i=1...N

cwinit ≺ cri ≺ cwi︸                                          ︷︷                                          ︸
PPO

∧

∧
w,w′∈W,w,w′

(cw ≺ cw′ ∨ cw′ ≺ cw ) ∧ sw , sw′︸                                                     ︷︷                                                     ︸
WW[x]

∧

∧
w∈W,r∈R

(cw ≺ cr ∨ cr ≺ cw )

︸                             ︷︷                             ︸
RW[x]

∧

∧
r∈R

∨
w∈W

sw = sr

︸               ︷︷               ︸
RFTO[x]

∧ rvrassert > N︸       ︷︷       ︸
assert(v0≤N)

∧

∧
w∈W,r∈R

(sw = sr )⇒ cw ≺ cr︸                             ︷︷                             ︸
RF3[x]

∧

∧
r∈R

(swinit = sr )⇒ 0 = rvr︸                         ︷︷                         ︸
RF3[x]

∧

∧
i=1...N,r∈R

(swi = sr )⇒ rvri + 1 = rvr︸                                      ︷︷                                      ︸
RF3[x]∧

w,w′∈W,r∈R

(sw = sr ∧ cw ≺ cw′)⇒ cr ≺ cw′︸                                                  ︷︷                                                  ︸
FR[x]

21 / 27



Factorial Lower Bound DPLL(T ) Proof
Complexity

Theorem (Lower Bound for Cubic Partial-Order Encoding)
All Fixed-Alphabet-DPLL(T ) proofs for the problem challenge
encoded with φ3 contain at least N! applications of T -learn.

We also have a quadratic-size partial-order encoding.2

This asymptotically smaller encoding has also at least
factorial-sized DPLL(T ) proofs for our challenge problem!

2Horn and Kroening. On Partial Order Semantics for SAT/SMT-based
Symbolic Encodings of Weak Memory Concurrency. In: FORTE’15.
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Experiments with Two Partial-Order Encodings
E

3 and E2 are partial-order encodings of asymptotically different
size, parameterized by three theories TC , TS and TV .

We instantiate 〈TC ,TS ,TV 〉 to four configurations:

1. “real-clk-int-val”: TC = TS = TR and TV = TZ
2. “bv-clk-int-val”: TC = TS = TBV and TV = TZ
3. “real-clk-bv-val”: TC = TS = TR and TV = TBV
4. “bv-clk-bv-val”: TC = TS = TBV and TV = TBV

We use the following SMT solvers: Boolector, CVC4, Yices2, Z3.

Example: “z3-bv-clk-int-val-E2” denotes experiments with the
O(N2) encoding using Z3 where TC = TS = TBV and TV = TZ.
We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour.
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Experimental Results
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cvc4-real-clk-int-val-{E3, E2
}

cvc4-real-clk-bv-val-{E3, E2
}

cvc4-bv-clk-int-val-{E3, E2
}

cvc4-bv-clk-bv-val-{E3, E2
}

z3-real-clk-int-val-{E3, E2
}

z3-real-clk-bv-val-{E3, E2
}

z3-bv-clk-int-val-{E3, E2
}

z3-bv-clk-bv-val-{E3, E2
}

yices-real-clk-int-val-{E3, E2
}

yices-bv-clk-bv-val-{E3, E2
}

boolector-bv-clk-bv-val-{E3, E2
}

Factorial growth of conflicts in fkp2013-unsat benchmark.
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Concluding Remarks

• We have studied a simple, yet challenging concurrency
problem.

• Our experiments provide an important diagnostic practice in the
development of SMT encodings.

• The proofs we have manually inspected in CVC4 pinpoint value
constraints as culprits.

• This way, our experiments can guide research into improving
the performance of SMT solvers on such benchmarks.

The results of our work will shortly be published in SMT’15.

Thank you!
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SC-relaxed Consistency Encoding
Let E be the set of events,� be the PPO, val : E→ TV -terms,
guard : E→ TV -formulas and L be the set of memory locations.

PPO ,
∧
{(guard(e) ∧ guard(e′))⇒ (ce ≺ ce′) | e,e′ ∈ E: e � e′}

WW[x] ,
∧{

(cw ≺ cw′ ∨ cw′ ≺ cw ) ∧ sw , sw′ | w,w′ ∈Wx ∧ w , w′
}

RW[x] ,
∧
{cw ≺ cr ∨ cr ≺ cw | w ∈Wx ∧ r ∈ Rx }

RFTO[x] ,
∧
{guard(r)⇒

∨
{sw = sr | w ∈Wx } | r ∈ Rx }

RF3[x] ,
∧
{(sw = sr )⇒ (guard(w) ∧ val(w) = rvr ∧ cw ≺ cr ) | r ∈ Rx ∧ w ∈Wx }

FR[x] ,
∧{

(sw = sr ∧ cw ≺ cw′ ∧ guard(w′))⇒ (cr ≺ cw′) | w,w′ ∈Wx ∧ r ∈ Rx
}

E
3 ,

∧{
RFTO[x] ∧ RF3[x] ∧ FR[x] ∧WW[x] ∧ RW[x] | x ∈ L

}
∧ PPO

RF2[x] ,
∧{

(sw = sr )⇒ (cw = supr ∧ guard(w) ∧ val(w) = rvr ∧ cw ≺ cr ) | r ∈ Rx ∧ w ∈Wx
}

SUP[x] ,
∧{

(cw � cr ∧ guard(w))⇒ (cw � supr ) | r ∈ Rx ∧ w ∈Wx
}

E
2 ,

∧{
RFTO[x] ∧ RF2[x] ∧ SUP[x] ∧WW[x] ∧ RW[x] | x ∈ L

}
∧ PPO
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