
A Concurrency Problem with
Exponential DPLL(T) Proofs

Liana Hadarean1 Alex Horn1 Tim King2

1University of Oxford

2Verimag

June 5, 2015

Outline

SAT/SMT-based Verification Techniques for Concurrency

DPLL(T) Lower Bound Proof Complexity Theorem

A Concurrency Problem with O(N!)-sized DPLL(T) Proofs
Two State-of-the-art Partial-Order Encodings

Experiments

Concluding Remarks

2 / 27

SAT/SMT-based Verification Techniques
SAT/SMT solvers are highly optimized decision procedures:

SAT
φ // 2

55

))
UNSAT

Using these, state-of-the-art symbolic bounded model checker
such as CBMC can find concurrency bugs in , and .

/* insertion sort ascending order */!
 !
#include <stdio.h>!
 !
thread() {!
 int n, array[1000], c, d, t;!
 printf("Enter %d integers\n", n);!
 for (c = 0; c < n; c++) {!
 scanf("%d", &array[c]);!
 }!
 for (c = 1 ; c <= n - 1; c++) {!
 d = c;!
 while (d > 0 && array[d] < array[d-1]) {!
 t = array[d];!
 array[d] = array[d-1];!
 array[d-1] = t;!
 d--;!
 }!
 }!
}!
thread() { printf(”Hi there!\n”); }!

Input	

Par*al-‐Order	
Encoding	 Φ	

Output	

CBMC:	 	 	 	 	 	 	 	 ×	

3 / 27

The Problem
Can we pinpoint the challenges (if any) symbolic partial-order
encodings of concurrency pose for SAT/SMT solvers?

If yes, what insights can we gain?

4 / 27

SMT Solvers built on DPLL(T)

ArraysArrays

 SAT
main

CDCL

 SAT
main

CDCL

assertions

conflicts
propagations
explanations

UFUF

LRALRA

Bit-vectorsBit-vectors

core

5 / 27

Fixed-Alphabet DPLL(T) Proofs
The SMT solvers in our experiments are built on the DPLL(T)
framework. A simplified form of DPLL(T) with only two rules:
• Propositional resolution (Res);
• Learning T -valid clauses over the literals of a fixed alphabet of
T -atoms (T -learn).

Example: (x < y ∨ x = y) ∧ y < x where x , y ∈ Z. This formula is
T -unsatisfiable where T is QF LIA.

6 / 27

Fixed-Alphabet DPLL(T) Proofs
The SMT solvers in our experiments are built on the DPLL(T)
framework. A simplified form of DPLL(T) with only two rules:
• Propositional resolution (Res);
• Learning T -valid clauses over the literals of a fixed alphabet of
T -atoms (T -learn).

Example: (x < y ∨ x = y) ∧ y < x where x , y ∈ Z. This formula is
T -unsatisfiable where T is QF LIA.

7 / 27

Fixed-Alphabet DPLL(T) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y) ∧

C︷︸︸︷
y < x

8 / 27

Fixed-Alphabet DPLL(T) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y) ∧

C︷︸︸︷
y < x

; (A︸︷︷︸
>

∨ B︸︷︷︸
⊥

) ∧ C︸︷︷︸
>

(SAT: Yes)

()
()

9 / 27

Fixed-Alphabet DPLL(T) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y) ∧

C︷︸︸︷
y < x

; (A︸︷︷︸
>

∨ B︸︷︷︸
⊥

) ∧ C︸︷︷︸
>

(SAT: Yes)

; (A ∨ B) ∧ C ∧ (¬A ∨ ¬C) (T -learn)
()

10 / 27

Fixed-Alphabet DPLL(T) Proofs

Example: (

A︷︸︸︷
x < y ∨

B︷︸︸︷
x = y) ∧

C︷︸︸︷
y < x

; (A︸︷︷︸
>

∨ B︸︷︷︸
⊥

) ∧ C︸︷︷︸
>

(SAT: Yes)

; (A ∨ B) ∧ C ∧ (¬A ∨ ¬C) (T -learn)
; (A︸︷︷︸

⊥

∨ B︸︷︷︸
>

) ∧ C︸︷︷︸
>

∧(¬A︸︷︷︸
>

∨ ¬C︸︷︷︸
⊥

) (SAT: Yes)

; (A ∨ B) ∧ C ∧ (¬A ∨ ¬C) ∧ (¬B ∨ ¬C) (T -learn)
; ⊥ (Res)

11 / 27

Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8

12 / 27

Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8

13 / 27

Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8

14 / 27

Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8

15 / 27

Known Challenges for SMT Solvers

φ3 , a1 , a9 ∧
∧8

i=1 (ai = bi ∧ bi = ai+1) ∨ (ai = ci ∧ ci = ai+1)

b1 b2 b3 b8

a1 a2 a3 a4 . . . a8 a9

c1 c2 c3 c8

• Note that φ3 is unsatisfiable because ai = ai+1 for all 1 ≤ i ≤ 8.
• But DPLL(T) cannot learn these equalities and enumerates 28

theory conflicts instead, the infamous diamonds problem.1

1Bjørner, N., Dutertre, B., de Moura, L.: Accelerating Lemma Learning using
Joins - DPLL(Join). In: LPAR (2008)

16 / 27

Contributions

• A general framework for establishing lower bounds on the
number of T -conflicts in the fixed-alphabet DPLL(T) calculus;

• Proof of factorial lower bound proof complexity for two
state-of-the-art symbolic partial-order encodings of a simple,
yet challenging concurrency problem;

• Experiments that confirm our theoretical lower bound.

2 4 6

200

400

600

800
Ω(N!)
Ω(2N)

17 / 27

DPLL(T) Lower Bound Proof Complexity
Informally, non-interfering set of critical assignments are
propositionally satisfying assignments that contain minimal,
disjoint T -conflicts.

Theorem
Let φ be an unsatisfiable T -formula, and Q be a non-interfering
set of critical assignments for φ. Every Fixed-Alphabet-DPLL (T)
proof that φ is UNSAT contains at least |Q | applications of T -learn.

This theorem is a theoretical tool for proving lower bound proof
complexity results in the DPLL(T) framework (as exhibited next).

18 / 27

The Concurrency Problem
The value at memory location x is initialized to zero, i.e. [x] = 0.

Thread T0 Thread T1 Thread TN

local v0 := [x] local v1 := [x]
. . .

local vN := [x]
assert(v0 ≤ N) [x] := v1 + 1 [x] := vN + 1

Thread T0 Thread T1 Thread TN

r0 r1 . . .
rN

w1 wN

For N = 2, if restricted to T1 ‖ T2, we get the following interleavings:

(1) r1; w1; r2; w2 (2) r1; r2; w1; w2 (3) r1; r2; w2; w1
(4) r2; r1; w1; w2 (5) r2; r1; w2; w1 (6) r2; w2; r1; w1.

In general, we get (2N + 1)! ÷ 2N interleavings for T0 ‖ T1 ‖ . . . ‖ TN.
19 / 27

Concurrency Problem Encoding
We define the following preserved-program order (PPO) for the
problem challenge T0 ‖ T1 ‖ . . . ‖ TN: winit

}} �� ((r0 r1

��

. . . rN

��
w1 . . . wN

Let R , {r0, . . . , rN} and W , {winit ,w0, . . . ,wN}.

Our partial-order encodings are parameterized by three theories:
• TC : clock constraints, e.g. cr ≺ cw for r ∈ R and w ∈W,
• TS : selection constraints, e.g. sr = sw for r ∈ R and w ∈W,
• TV : read constraints, e.g. rvr is a unique TV -variable for r ∈ R.

20 / 27

Cubic-size Encoding of Concurrency Problem
Let φ3 be the O(N3) partial-order encoding of T0 ‖ T1 ‖ . . . ‖ TN:

cwinit ≺ crassert ∧

∧
i=1...N

cwinit ≺ cri ≺ cwi︸ ︷︷ ︸
PPO

∧

∧
w,w′∈W,w,w′

(cw ≺ cw′ ∨ cw′ ≺ cw) ∧ sw , sw′︸ ︷︷ ︸
WW[x]

∧

∧
w∈W,r∈R

(cw ≺ cr ∨ cr ≺ cw)

︸ ︷︷ ︸
RW[x]

∧

∧
r∈R

∨
w∈W

sw = sr

︸ ︷︷ ︸
RFTO[x]

∧ rvrassert > N︸ ︷︷ ︸
assert(v0≤N)

∧

∧
w∈W,r∈R

(sw = sr)⇒ cw ≺ cr︸ ︷︷ ︸
RF3[x]

∧

∧
r∈R

(swinit = sr)⇒ 0 = rvr︸ ︷︷ ︸
RF3[x]

∧

∧
i=1...N,r∈R

(swi = sr)⇒ rvri + 1 = rvr︸ ︷︷ ︸
RF3[x]∧

w,w′∈W,r∈R

(sw = sr ∧ cw ≺ cw′)⇒ cr ≺ cw′︸ ︷︷ ︸
FR[x]

21 / 27

Factorial Lower Bound DPLL(T) Proof
Complexity

Theorem (Lower Bound for Cubic Partial-Order Encoding)
All Fixed-Alphabet-DPLL(T) proofs for the problem challenge
encoded with φ3 contain at least N! applications of T -learn.

We also have a quadratic-size partial-order encoding.2

This asymptotically smaller encoding has also at least
factorial-sized DPLL(T) proofs for our challenge problem!

2Horn and Kroening. On Partial Order Semantics for SAT/SMT-based
Symbolic Encodings of Weak Memory Concurrency. In: FORTE’15.

22 / 27

Experiments with Two Partial-Order Encodings
E

3 and E2 are partial-order encodings of asymptotically different
size, parameterized by three theories TC , TS and TV .

We instantiate 〈TC ,TS ,TV 〉 to four configurations:

1. “real-clk-int-val”: TC = TS = TR and TV = TZ
2. “bv-clk-int-val”: TC = TS = TBV and TV = TZ
3. “real-clk-bv-val”: TC = TS = TR and TV = TBV
4. “bv-clk-bv-val”: TC = TS = TBV and TV = TBV

We use the following SMT solvers: Boolector, CVC4, Yices2, Z3.

Example: “z3-bv-clk-int-val-E2” denotes experiments with the
O(N2) encoding using Z3 where TC = TS = TBV and TV = TZ.
We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour.

23 / 27

Experimental Results

3 4 5 6 7 8 9

101

103

105

107

N!

Number of threads (N)

N
um

be
ro

fS
AT

co
nfl

ic
ts

cvc4-real-clk-int-val-{E3, E2
}

cvc4-real-clk-bv-val-{E3, E2
}

cvc4-bv-clk-int-val-{E3, E2
}

cvc4-bv-clk-bv-val-{E3, E2
}

z3-real-clk-int-val-{E3, E2
}

z3-real-clk-bv-val-{E3, E2
}

z3-bv-clk-int-val-{E3, E2
}

z3-bv-clk-bv-val-{E3, E2
}

yices-real-clk-int-val-{E3, E2
}

yices-bv-clk-bv-val-{E3, E2
}

boolector-bv-clk-bv-val-{E3, E2
}

Factorial growth of conflicts in fkp2013-unsat benchmark.

24 / 27

Concluding Remarks

• We have studied a simple, yet challenging concurrency
problem.

• Our experiments provide an important diagnostic practice in the
development of SMT encodings.

• The proofs we have manually inspected in CVC4 pinpoint value
constraints as culprits.

• This way, our experiments can guide research into improving
the performance of SMT solvers on such benchmarks.

The results of our work will shortly be published in SMT’15.

Thank you!

25 / 27

Concluding Remarks

• We have studied a simple, yet challenging concurrency
problem.

• Our experiments provide an important diagnostic practice in the
development of SMT encodings.

• The proofs we have manually inspected in CVC4 pinpoint value
constraints as culprits.

• This way, our experiments can guide research into improving
the performance of SMT solvers on such benchmarks.

The results of our work will shortly be published in SMT’15.

Thank you!

26 / 27

SC-relaxed Consistency Encoding
Let E be the set of events,� be the PPO, val : E→ TV -terms,
guard : E→ TV -formulas and L be the set of memory locations.

PPO ,
∧
{(guard(e) ∧ guard(e′))⇒ (ce ≺ ce′) | e,e′ ∈ E: e � e′}

WW[x] ,
∧{

(cw ≺ cw′ ∨ cw′ ≺ cw) ∧ sw , sw′ | w,w′ ∈Wx ∧ w , w′
}

RW[x] ,
∧
{cw ≺ cr ∨ cr ≺ cw | w ∈Wx ∧ r ∈ Rx }

RFTO[x] ,
∧
{guard(r)⇒

∨
{sw = sr | w ∈Wx } | r ∈ Rx }

RF3[x] ,
∧
{(sw = sr)⇒ (guard(w) ∧ val(w) = rvr ∧ cw ≺ cr) | r ∈ Rx ∧ w ∈Wx }

FR[x] ,
∧{

(sw = sr ∧ cw ≺ cw′ ∧ guard(w′))⇒ (cr ≺ cw′) | w,w′ ∈Wx ∧ r ∈ Rx
}

E
3 ,

∧{
RFTO[x] ∧ RF3[x] ∧ FR[x] ∧WW[x] ∧ RW[x] | x ∈ L

}
∧ PPO

RF2[x] ,
∧{

(sw = sr)⇒ (cw = supr ∧ guard(w) ∧ val(w) = rvr ∧ cw ≺ cr) | r ∈ Rx ∧ w ∈Wx
}

SUP[x] ,
∧{

(cw � cr ∧ guard(w))⇒ (cw � supr) | r ∈ Rx ∧ w ∈Wx
}

E
2 ,

∧{
RFTO[x] ∧ RF2[x] ∧ SUP[x] ∧WW[x] ∧ RW[x] | x ∈ L

}
∧ PPO

27 / 27

	SAT/SMT-based Verification Techniques for Concurrency
	DPLL(T) Lower Bound Proof Complexity Theorem
	A Concurrency Problem with O(N!)-sized DPLL(T) Proofs
	Two State-of-the-art Partial-Order Encodings

	Experiments
	Concluding Remarks

