SMT-based approaches to Model Checking of Distributed Broadcast Algorithms

Francesco Alberti, Silvio Ghilardi, Andrea Orsini, Elena Pagani
Università degli Studi di Milano / Fondazione Centro San Raffaele

FRIDA 2015
June 5, 2015
Goal of the work

- automatic formal validation of fault-tolerant distributed algorithms
- crucial for many critical applications:
 - industrial plant monitoring via wireless sensors and actuators networks
 - fleet coordination
 - intelligent transport systems
 - aerospace applications
- algorithms involve an arbitrary number N of processes whose behavior depends on the messages they exchange
- algorithms are infinite-state reactive parameterized systems
 - verification that unsafe states cannot be reached from initial configurations, for any number of processes
- verification using either array-based systems or counter systems
Goal of the work

The work is part of a wider project of realizing a broad scope SMT-based model-checker able to handle *quantified assertions* over *array* theories.
Goal of the work

The work is part of a wider project of realizing a broad scope SMT-based model-checker able to handle *quantified assertions* over *array* theories.

The model-checker employs *backward search with abstraction* and *acceleration* heuristics.
Goal of the work

The work is part of a wider project of realizing a broad scope SMT-based model-checker able to handle *quantified assertions* over *array* theories.

The model-checker employs *backward search with abstraction* and *acceleration* heuristics.

An SMT-solver is used to discharge quantifier-free proof obligations; quantifiers are preprocessed by the model-checker using both *instantiations* and *quantifier elimination*.
Goal of the work

The work is part of a wider project of realizing a broad scope SMT-based model-checker able to handle *quantified assertions* over *array* theories.

The model-checker employs *backward search with abstraction* and *acceleration* heuristics.

An SMT-solver is used to discharge quantifier-free proof obligations; quantifiers are preprocessed by the model-checker using both *instantiations* and *quantifier elimination*.

MCMT current release is 2.5.2 (*Yices* is the underlying SMT-solver); the tool has been successfully used to verify safety properties of cache-coherence, mutual exclusion, timed, fault-tolerant systems as well as imperative programs over arrays and strings.
1 Specification Formalisms: arrays and counters

2 Case Studies
Array-based Systems

By a *theory* we mean here a pair $T = (\Sigma, \mathcal{C})$, where Σ is a first-order signature and \mathcal{C} is a class of Σ-structures (called the models of T).
Array-based Systems

By a *theory* we mean here a pair $T = (\Sigma, C)$, where Σ is a first-order signature and C is a class of Σ-structures (called the models of T).

- **Topology** of the parameterised system: theory $T_I = (\Sigma_I, C_I)$

 E.g.: C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...
Array-based Systems

By a *theory* we mean here a pair $T = (\Sigma, C)$, where Σ is a first-order signature and C is a class of Σ-structures (called the models of T).

- **Topology** of the parameterised system: theory $T_I = (\Sigma_I, C_I)$
 E.g.: C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...

- **Data** manipulated by the parameterised system: theories $T_E = (\Sigma_E, C_E)$
 Usually C_E contains just one structure: integers, reals, Booleans, control locations, ...
Array-based Systems

By a *theory* we mean here a pair $T = (\Sigma, C)$, where Σ is a first-order signature and C is a class of Σ-structures (called the models of T).

- **Topology** of the parameterised system: theory $T_I = (\Sigma_I, C_I)$
 E.g.: C_I consists of all (finite) sets, linear orders, forests/trees, graphs, ...

- **Data** manipulated by the parameterised system: theories $T_{E_i} = (\Sigma_{E_i}, C_{E_i})$
 Usually C_{E_i} contains just one structure: integers, reals, Booleans, control locations, ...

- We assume the availability of SMT solvers deciding the satisfiability of quantifier-free formulae modulo T_I and T_{E_i}.

Silvio Ghilardi
SMT-based model checking
FRIDA 2015
the sort INDEX is constrained by T_I;

- the sort ELEM is constrained by T_E;

- the sort ARRAY represents arrays of ELEM defined on INDEX;

- the ‘read’ operation $_ [_]$ is added to $\Sigma I \cup \Sigma E$;

- the class of models of A^E_I consists of the three-sorted structures whose reducts are models of T_I, T_E and the sort ARRAY is interpreted as the set of total functions from indexes to elements and the read operation is interpreted as function application.
Array-Based Systems

- An array-based system on A_i^E with array state variable a is the following pair of formulae:

$$S = \langle l(a), \tau(a, a') \rangle.$$
Array-Based Systems

- An array-based system on A^E_i with array state variable a is the following pair of formulae:

 $$S = \langle I(a), \tau(a, a') \rangle.$$

- A state of an array-based system is an assignment to the variable a in a model of A^E_i.
Array-Based Systems

- An array-based system on A^E_i with array state variable a is the following pair of formulae:

$$S = \langle I(a), \tau(a, a') \rangle.$$

- A state of an array-based system is an assignment to the variable a in a model of A^E_i.

- A safety problem for S is the following: given a formula $K(a)$, is A^E_i-satisfiable for some n?

$$I(a_0) \land \tau(a_0, a_1) \land \cdots \land \tau(a_{n-1}, a_n) \land K(a_n)$$
Revisiting Backward Reachability

Idea: recast symbolically the backward reachability algorithm

```
function BReach(K)
    i ← 0; BR^0(τ, K) ← K; K^0 ← K
    if BR^0(τ, K) ∩ l ≠ ∅ then return unsafe
    repeat
        K^{i+1} ← Pre(τ, K^i)
        BR^{i+1}(τ, K) ← BR^i(τ, K) ∪ K^{i+1}
        if BR^{i+1}(τ, K) ∩ l ≠ ∅ then return unsafe
        else i ← i + 1
    until BR^{i+1}(τ, K) ⊆ BR^i(τ, K)
    return safe
end
```
Revisiting Backward Reachability

Idea: recast symbolically the backward reachability algorithm

```latex
\begin{algorithm}
\textbf{function} \texttt{BReach}(K) \\
i \longleftarrow 0; \text{BR}^0(\tau, K) \longleftarrow K; K^0 \longleftarrow K \\
\textbf{if} A^E_i\text{-check}(\text{BR}^0(\tau, K) \land I) = \text{sat} \textbf{then return unsafe} \\
\textbf{repeat} \\
K^{i+1} \longleftarrow \text{Pre}(\tau, K^i) \\
\text{BR}^{i+1}(\tau, K) \longleftarrow \text{BR}^i(\tau, K) \lor K^{i+1} \\
\textbf{if} A^E_i\text{-check}(\text{BR}^{i+1}(\tau, K) \land I) = \text{sat} \textbf{then return unsafe} \\
\textbf{else} i \longleftarrow i + 1 \\
\textbf{until} A^E_i\text{-check}(\neg(\text{BR}^{i+1}(\tau, K) \rightarrow \text{BR}^i(\tau, K))) = \text{unsat} \\
\textbf{return safe} \\
\textbf{end}
\end{algorithm}
```

But this is problematic... unless right formats for I, τ, K are found!
Proposed format for I: \forall^I-formulae

$$\forall i \phi(i, a[i])$$

where i is a tuple of variables of sort INDEX and ϕ is a quantifier-free $\Sigma_I \cup \Sigma_E$-formula.

For instance, the formula $\forall i. a[i] = \text{idle}$ says that all processes are in state idle.
Proposed format for K: \exists'-formulae

$$\exists i \phi(i, a[i])$$

where i is a tuple of variables of sort INDEX and ϕ is a quantifier-free $\Sigma_I \cup \Sigma_E$-formula.

For instance, the formula

$$\exists i_1 \exists i_2. (i_1 \neq i_2 \land a[i_1] = \text{use} \land a[i_2] = \text{use})$$

expresses that mutual exclusion is violated.
Format for transitions formulae

Proposed format for τ: we use disjunctions of formulae of the kind

$$\exists i \left(\phi_L(i, a[i]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)$$

(1)

where F is a case-defined function (cases are described by quantifier-free formulae).
Format for transitions formulae

Proposed format for τ: we use disjunctions of formulae of the kind

$$\exists i \left(\phi_L(i, a[i]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)$$

(1)

where F is a case-defined function (cases are described by quantifier-free formulae).

For instance, the formula

$$\exists i. \left(a[i] = \text{use} \land a' = \lambda j (\text{if } j = i \text{ then idle else } a[j]) \right)$$

is one of the disjunctions of the transition of the ‘bakery’ algorithm.
This framework works because:

- closure under preimage of existential formulae guarantees symbolic backward search;
- safety tests are decidable by combination results;
- fixpoints tests are decidable under relatively mild assumptions;
- termination is guaranteed under strong assumptions, but holds in many practical cases.
Why it works...

To improve termination and performances, suitable heuristics are available:

- acceleration (for array fragments too);
- abstraction/refinement loops.

These heuristics are both implemented in MCMT since version 2.0, although still not in a full way.
Counters specifications

Array-based systems can implement also counters or shared variables: these can be seen as constant arrays (MCMT specifications accept them directly as global variables of suitable type).
Counters specifications

Array-based systems can implement also counters or shared variables: these can be seen as constant arrays (MCMT specifications accept them directly as global variables of suitable type).

When only counters integer variables occur, array-based systems becomes counter automata (quantifiers are redundant, variable updates and guards become just Presburger definable expressions).
Counters specifications

Array-based systems can implement also counters or shared variables: these can be seen as constant arrays (MCMT specifications accept them directly as global variables of suitable type).

When only counters integer variables occur, array-based systems becomes counter automata (quantifiers are redundant, variable updates and guards become just Presburger definable expressions).

For counters systems, highly engineered SMT-based model checkers, implementing sophisticated abstraction/refinement algorithms like IC3, are available. We used μZ and NuXmv in our experiments.
Counters specifications

Array-based systems can implement also counters or shared variables: these can be seen as constant arrays (MCMT specifications accept them directly as global variables of suitable type).

When only counters integer variables occur, array-based systems becomes counter automata (quantifiers are redundant, variable updates and guards become just Presburger definable expressions).

For counters systems, highly engineered SMT-based model checkers, implementing sophisticated abstraction/refinement algorithms like IC3, are available. We used μZ and NuXmv in our experiments.

It should be noted that whereas array-based specifications are usually quite faithful and close to the original informal specifications, this is not the case for counters specifications: the latter are simulations possibly introducing spurious runs.
Specification Formalisms: arrays and counters

Case Studies
Reliable Broadcast problem

- group G of N cooperating processes generating messages
- some processes may be subject to failures during the algorithm run
- for each message, the processes must agree on whether to consider it, and deliver it to the user, or not
- more formally, for each message the algorithm must guarantee the following safety property

Agreement

If a correct process decides to deliver a message m, then all correct processes decide to deliver m.

T. D. Chandra and S. Toueg.

Time and message efficient reliable broadcasts.

Behavior of faulty processes: preliminaries

- message broadcasting is not atomic with respect to crash failures
- **send-omission** algorithm as an example:
 - a process may omit to send any message of the algorithm
 - the receiver does not know whether the sender is crashed or not, and what other processes in the group have possibly received the message
- **general-omission**: a process may also omit to receive some messages
- **byzantine**: a faulty process may also send messages with a wrong content

Figure: send-omission algorithm
Scheme of the algorithm for crash failures

- each coordinator tries to stabilize the estimate it owns
Crash failures: pseudo-code

Initialization:
 if \((p\) is the sender) then
 \(estimate[p] \leftarrow m\);
 else \(estimate[p] \leftarrow \bot\);
 \(state[p] \leftarrow undecided\);
End Initialization

for \(c \leftarrow 1, 2, \ldots, N\) do // Process \(c\) becomes coordinator for three rounds
 1. Round 1:
 2. All \(undecided\) processes \(p\) send request to \(c\);
 3. if \((c\) does not receive any request) then it skips rounds 2 and 3;
 4. Round 2:
 5. \(c\) multicasts \(estimate[c]\);
 6. All \(undecided\) processes \(p\) that receive \(estimate[c]\) do
 7. \(estimate[p] \leftarrow estimate[c]\);
 8. Round 3:
 9. \(c\) multicasts \(Decide\);
 10. All \(undecided\) processes \(p\) that receive \(Decide\) do
 11. \(decision[p] \leftarrow estimate[p]\);
 12. \(state[p] \leftarrow DECIDED\);
end for
Array-based modelization does not offer special difficulties, universal guards can be modeled with an ad hoc quantifier relativization procedure:

F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, G. Rossi
Universal guards, relativization of quantifiers, and failure models in model checking modulo theories,
Crash failures: modelization

Counter modelization is possible: we need an integer variable for the round, an integer variable for the coordinator estimate, integer variables counting decided/undecided processes with estimate m/\bot, integer variables counting processes in locations done/undone with estimate m/\bot, etc...
Crash failures: modelization

Counter modelization is possible: we need an integer variable for the round, an integer variable for the coordinator estimate, integer variables counting decided/undecided processes with estimate \(m/\bot \), integer variables counting processes in locations done/undone with estimate \(m/\bot \), etc ...

We lose the information that a process has already been coordinator, so the simulation with counters allows extra runs where a process has been coordinator more than once.
Scheme of the algorithm for send-omission failures

- undecided processes send the most recent estimate they received, with the indication of the sending coordinator
- they send a *nack* if they do not receive the estimate of the current coordinator, to notify it that it is faulty

![Diagram of the algorithm](image)
Crash and Send-Omission failures: pseudo-code

Initialization:

\[\text{if (} p \text{ is the sender) \} \]
\[\quad \text{then} \quad \text{estimate}[p] \leftarrow m; \quad \text{coord}_id[p] \leftarrow 0; \]
\[\quad \text{else} \quad \text{estimate}[p] \leftarrow \bot; \quad \text{coord}_id[p] \leftarrow -1; \]
\[\quad \text{state}[p] \leftarrow \text{undecided}; \]
\[\text{End Initialization} \]

\[\text{for} \ c \leftarrow 1, 2, \ldots, N \ \text{do} \]
\[\quad \text{// Process } c \text{ becomes coordinator for four rounds} \]

1. **Round 1:**
2. All undecided processes \(p \) send \text{request}(\text{estimate}[p], \text{coord}_id[p]) to \(c \);
3. if (\(c \) does not receive any request) then it skips rounds 2 to 4;
4. else \(\text{estimate}[c] \leftarrow \text{estimate}[p] \) with largest \(\text{coord}_id[p] \);

5. **Round 2:**
6. \(c \) multicasts \text{estimate}[c];
7. All undecided processes \(p \) that receive \text{estimate}[c] do
8. \(\text{estimate}[p] \leftarrow \text{estimate}[c] \) \text{ and } \text{coord}_id[p] \leftarrow c ;

9. **Round 3:**
10. All undecided processes \(p \) that do not receive \text{estimate}[c] send(\text{NACK}) to \(c \);

11. **Round 4:**
12. if (\(c \) does not receive any \text{NACK}) then \(c \) multicasts \text{Decide}; else \(c \) HALTS;
13. All undecided processes \(p \) that receive \text{Decide} do
14. \(\text{decision}[p] \leftarrow \text{estimate}[p] \);
15. \(\text{state}[p] \leftarrow \text{DECIDED}; \)

end for
Send-Omission failures: modelization

Again, array-based specification does not offer problems.
Send-Omission failures: modelization

Again, array-based specification does not offer problems.

Counter specification requires some manipulation, because there is no way of formalizing the meaning of “larger coord-id[p]”
Send-Omission failures: modelization

Again, array-based specification does not offer problems.

Counter specification requires some manipulation, because there is no way of formalizing the meaning of “larger coord-id[p]”

We adjust the situation by using part of our knowledge of the algorithm: the new coordinate estimate can be arbitrary in some circumstances
Send-Omission failures: modelization

Again, array-based specification does not offer problems.

Counter specification requires some manipulation, because there is no way of formalizing the meaning of “larger coord-id[p]”
We adjust the situation by using part of our knowledge of the algorithm: the new coordinate estimate can be arbitrary in some circumstances This modified specification includes all concrete runs (together with spurious ones).
if a coordinator receives requests from undecided processes, it asks both decided and undecided processes to send the most recent estimate they received, with the indication of the sending coordinator

majority resilience: at least \((n+1)/2\) processes must behave correctly throughout the whole algorithm run

- if the coordinator receives only a minority of feedbacks, it detects its own failure
General Omission failures: modelization

The new features arising here are resilience guards. These are easy to model in counter specifications.
General Omission failures: modelization

The new features arising here are resilience guards. These are easy to model in counter specifications.

In principle, array-based formalisms support this: one uses suitable transitions loops like

```c
int I, J = 0;
for(I = 0; I ≤ N; I ++){if(received_from[I] == 1)J ++;}
```

and then uses the value of J in resilience guards.
General Omission failures: modelization

The new features arising here are resilience guards. These are easy to model in counter specifications.

In principle, array-based formalisms support this: one uses suitable transitions loops like

```c
int I, J = 0;
for(I = 0; I ≤ N; I + +){if(received_from[I] == 1)J + +;}
```

and then uses the value of J in resilience guards.

In practice, the actual heuristics for preventing termination implemented in MCMT may fail to succeed when such solutions are adopted. We believe there is room for improvement, though.
Byzantine broadcast primitive

- substitutes authentication obtained via unforgeable signatures
- resilience: at most \(\frac{n - 1}{3} \) of the processes may fail

T.K. Srikanth and S. Toueg.
Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.

Byzantine broadcast primitive: pseudo-code

Round 1:

Phase 1: process p sends $\text{Init}(p, m, 1)$;

Phase 2: ∀ process does:

- if (received $\text{Init}(p, m, 1)$ from p in Phase 1)

 then send $\text{Echo}(p, m, 1)$ to all;

- if (received $\text{Echo}(p, m, 1)$ from $\geq n - t$ distinct processes in Phase 2)

 then $\text{Accept}(p, m, 1)$;

Round 2:

∀ Phase, ∀ process does:

- if (received $\text{Echo}(p, m, 1)$ from $\geq n - 2t$ distinct processes in previous phases \land not sent echo yet)

 then send $\text{Echo}(p, m, 1)$ to all;

- if (received $\text{Echo}(p, m, 1)$ from $\geq n - t$ distinct processes in this and previous phases)

 then $\text{Accept}(p, m, 1)$;

- different algorithms structure: processes consider the cumulative number of Echo’s messages received so far
Byzantine broadcast primitive

These are the properties we would like to verify:

Correctness
If correct process p broadcasts (p,m,k) in round k, then every correct process accepts (p,m,k) in the same round.

Unforgeability
If process p is correct and does not broadcast (p,m,k), then no correct process ever accepts (p,m,k).

Relay
If a correct process accepts (p,m,k) in round $r \geq k$ then every other correct process accepts (p,m,k) in round $r + 1$ or earlier.
Outline of the modelization

- We model faulty processes through their effect on correct ones.
- We omit reference to the round when processes accept.
- Correctness and Relay must be reformulated as safety properties (in particular Relay is broken into two parts).
Outline of the modelization

For array-based specifications, we used the above suggested methods for formalizing resilience conditions. MCMT was able to solve the problems with suitable settings of abstraction heuristics.
Outline of the modelization

For array-based specifications, we used the above suggested methods for formalizing resilience conditions. MCMT was able to solve the problems with suitable settings of abstraction heuristics.

For counter specifications, some specific simulation abstraction was needed (eg to simulate non symmetric faults, ’message withdrawns’ were allowed in interleaving with each process actions). All our tools solved the problems easily.
Performance evaluation

For counters specifications, we have implemented translators from MCMT to Z3 and nuXmv in order to guarantee fair comparison (on the other hand, array and counters specifications are not directly comparable).

<table>
<thead>
<tr>
<th>File</th>
<th>MCMT</th>
<th></th>
<th>Z3</th>
<th></th>
<th>nuXmv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth</td>
<td>Nodes</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>crash.mcmt</td>
<td>8</td>
<td>39</td>
<td>0.19"</td>
<td>0.69"</td>
<td>0.36"</td>
</tr>
<tr>
<td>sndom.mcmt</td>
<td>21</td>
<td>1772</td>
<td>77"</td>
<td>846"</td>
<td>22"</td>
</tr>
<tr>
<td>genom.mcmt</td>
<td>42</td>
<td>10102</td>
<td>6175"</td>
<td>t.o.</td>
<td>t.o.</td>
</tr>
<tr>
<td>byz_unforg.mcmt</td>
<td>7</td>
<td>51</td>
<td>0.42"</td>
<td>0.19"</td>
<td>0.04"</td>
</tr>
<tr>
<td>byz_corr.mcmt</td>
<td>7</td>
<td>131</td>
<td>6.16"</td>
<td>0.13"</td>
<td>0.24"</td>
</tr>
<tr>
<td>byz_relayA.mcmt</td>
<td>6</td>
<td>38</td>
<td>0.23"</td>
<td>0.07"</td>
<td>0.13"</td>
</tr>
<tr>
<td>byz_relayB.mcmt</td>
<td>8</td>
<td>185</td>
<td>5.21"</td>
<td>0.05"</td>
<td>0.16"</td>
</tr>
<tr>
<td>crash_array.mcmt</td>
<td>13</td>
<td>113</td>
<td>0.44"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sndom_array.mcmt</td>
<td>39</td>
<td>11206</td>
<td>2317"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unforg_array.mcmt</td>
<td>15</td>
<td>446</td>
<td>3.57"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr_array.mcmt</td>
<td>3</td>
<td>22</td>
<td>0.04"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relayI_array.mcmt</td>
<td>2</td>
<td>38</td>
<td>0.05"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relayII_array.mcmt</td>
<td>4</td>
<td>21</td>
<td>0.02"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concluding remarks

- The feeling is that array-based specifications of challenging problems are more difficult to verify.
Concluding remarks

- The feeling is that array-based specifications of challenging problems are more difficult to verify.
- Nevertheless, such specifications are more faithful, fine-grained, and expressive.
Concluding remarks

- The feeling is that array-based specifications of challenging problems are more difficult to verify.
- Nevertheless, such specifications are more faithful, fine-grained, and expressive.
- Counter specifications can be discharged by efficient solvers, so such specifications might produce useful invariants inside array-based or user-assisted verification.